L11n376

From Knot Atlas
Jump to: navigation, search

L11n375.gif

L11n375

L11n377.gif

L11n377

Contents

L11n376.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n376 at Knotilus!


Link Presentations

[edit Notes on L11n376's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,10,6,11 X3849 X22,18,19,17 X11,20,12,21 X19,12,20,13 X18,22,5,21 X9,16,10,17 X13,2,14,3
Gauss code {1, 11, -5, -3}, {-8, 7, 9, -6}, {-4, -1, 2, 5, -10, 4, -7, 8, -11, -2, 3, 10, 6, -9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n376 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(v-1) (w-1) \left(u w^2-1\right)}{\sqrt{u} \sqrt{v} w^{3/2}} (db)
Jones polynomial - q^{-9} + q^{-8} -2 q^{-7} +4 q^{-6} -2 q^{-5} +3 q^{-4} - q^{-3} +2 q^{-2} (db)
Signature -4 (db)
HOMFLY-PT polynomial -a^{10} z^{-2} -a^{10}+a^8 z^4+5 a^8 z^2+4 a^8 z^{-2} +7 a^8-a^6 z^6-6 a^6 z^4-13 a^6 z^2-5 a^6 z^{-2} -13 a^6+2 a^4 z^4+8 a^4 z^2+2 a^4 z^{-2} +7 a^4 (db)
Kauffman polynomial z^3 a^{11}-3 z a^{11}+a^{11} z^{-1} +z^4 a^{10}-2 z^2 a^{10}-a^{10} z^{-2} +2 a^{10}+z^7 a^9-6 z^5 a^9+15 z^3 a^9-14 z a^9+5 a^9 z^{-1} +z^8 a^8-6 z^6 a^8+14 z^4 a^8-13 z^2 a^8-4 a^8 z^{-2} +11 a^8+2 z^7 a^7-11 z^5 a^7+25 z^3 a^7-24 z a^7+9 a^7 z^{-1} +z^8 a^6-6 z^6 a^6+16 z^4 a^6-22 z^2 a^6-5 a^6 z^{-2} +16 a^6+z^7 a^5-5 z^5 a^5+11 z^3 a^5-13 z a^5+5 a^5 z^{-1} +3 z^4 a^4-11 z^2 a^4-2 a^4 z^{-2} +8 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-3       22
-5      121
-7     2  2
-9   111  1
-11   42   2
-13   2    2
-15 12     -1
-17        0
-191       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-5 i=-3 i=-1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4} {\mathbb Z}
r=-3 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n375.gif

L11n375

L11n377.gif

L11n377