L11n377

From Knot Atlas
Jump to: navigation, search

L11n376.gif

L11n376

L11n378.gif

L11n378

Contents

L11n377.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n377 at Knotilus!


Link Presentations

[edit Notes on L11n377's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X15,1,16,4 X5,10,6,11 X3849 X17,22,18,19 X11,20,12,21 X19,12,20,13 X21,18,22,5 X9,16,10,17 X2,14,3,13
Gauss code {1, -11, -5, 3}, {-8, 7, -9, 6}, {-4, -1, 2, 5, -10, 4, -7, 8, 11, -2, -3, 10, -6, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n377 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1)-1) (t(3)-1) \left(t(3)^2+2 t(2) t(3)-2 t(3)-t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} (db)
Jones polynomial - q^{-10} +2 q^{-9} -4 q^{-8} +6 q^{-7} -7 q^{-6} +9 q^{-5} -6 q^{-4} +7 q^{-3} -4 q^{-2} +2 q^{-1} (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^{10} z^{-2} -a^{10}+3 a^8 z^2+4 a^8 z^{-2} +6 a^8-2 a^6 z^4-6 a^6 z^2-5 a^6 z^{-2} -10 a^6-a^4 z^4+a^4 z^2+2 a^4 z^{-2} +4 a^4+2 a^2 z^2+a^2 (db)
Kauffman polynomial z^7 a^{11}-5 z^5 a^{11}+8 z^3 a^{11}-5 z a^{11}+a^{11} z^{-1} +2 z^8 a^{10}-9 z^6 a^{10}+12 z^4 a^{10}-6 z^2 a^{10}-a^{10} z^{-2} +3 a^{10}+z^9 a^9+z^7 a^9-19 z^5 a^9+33 z^3 a^9-20 z a^9+5 a^9 z^{-1} +6 z^8 a^8-24 z^6 a^8+31 z^4 a^8-23 z^2 a^8-4 a^8 z^{-2} +13 a^8+z^9 a^7+5 z^7 a^7-29 z^5 a^7+41 z^3 a^7-30 z a^7+9 a^7 z^{-1} +4 z^8 a^6-12 z^6 a^6+18 z^4 a^6-25 z^2 a^6-5 a^6 z^{-2} +16 a^6+5 z^7 a^5-14 z^5 a^5+19 z^3 a^5-15 z a^5+5 a^5 z^{-1} +3 z^6 a^4-z^4 a^4-5 z^2 a^4-2 a^4 z^{-2} +6 a^4+z^5 a^3+3 z^3 a^3+3 z^2 a^2-a^2 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-1         22
-3        42-2
-5       3  3
-7      34  1
-9     63   3
-11    35    2
-13   34     -1
-15  13      2
-17 13       -2
-19 1        1
-211         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-5 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{6}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{2} {\mathbb Z}^{2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n376.gif

L11n376

L11n378.gif

L11n378