From Knot Atlas
Jump to: navigation, search






(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n385 at Knotilus!

Link Presentations

[edit Notes on L11n385's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X3849 X9,16,10,17 X17,19,18,22 X11,20,12,21 X19,10,20,11 X21,5,22,18 X13,2,14,3
Gauss code {1, 11, -5, -3}, {-9, 8, -10, 7}, {-4, -1, 2, 5, -6, 9, -8, 4, -11, -2, 3, 6, -7, 10}
A Braid Representative
A Morse Link Presentation L11n385 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(v-1) (w-1) \left(u w^4-1\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial  q^{-1} - q^{-2} +3 q^{-3} - q^{-4} +3 q^{-5} -2 q^{-6} +2 q^{-7} - q^{-8} + q^{-9} - q^{-10} (db)
Signature -6 (db)
HOMFLY-PT polynomial -z^2 a^{10}-a^{10} z^{-2} -2 a^{10}+z^6 a^8+6 z^4 a^8+11 z^2 a^8+4 a^8 z^{-2} +10 a^8-z^8 a^6-7 z^6 a^6-17 z^4 a^6-21 z^2 a^6-5 a^6 z^{-2} -16 a^6+z^6 a^4+6 z^4 a^4+11 z^2 a^4+2 a^4 z^{-2} +8 a^4 (db)
Kauffman polynomial a^{13} z+a^{12} z^2+a^{11} z^3-2 a^{11} z+a^{11} z^{-1} +2 a^{10} z^4-7 a^{10} z^2-a^{10} z^{-2} +4 a^{10}+2 a^9 z^7-11 a^9 z^5+19 a^9 z^3-17 a^9 z+5 a^9 z^{-1} +3 a^8 z^8-19 a^8 z^6+39 a^8 z^4-36 a^8 z^2-4 a^8 z^{-2} +17 a^8+a^7 z^9-3 a^7 z^7-8 a^7 z^5+30 a^7 z^3-29 a^7 z+9 a^7 z^{-1} +4 a^6 z^8-26 a^6 z^6+54 a^6 z^4-47 a^6 z^2-5 a^6 z^{-2} +22 a^6+a^5 z^9-5 a^5 z^7+3 a^5 z^5+12 a^5 z^3-15 a^5 z+5 a^5 z^{-1} +a^4 z^8-7 a^4 z^6+17 a^4 z^4-19 a^4 z^2-2 a^4 z^{-2} +10 a^4 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
j \
-1         11
-3          0
-5       31 2
-7     112  2
-9     31   2
-11   221    1
-13  143     0
-15 111      1
-17 22       0
-1911        0
-211         -1
Integral Khovanov Homology

(db, data source)

\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-7 i=-5 i=-3
r=-7 {\mathbb Z} {\mathbb Z}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{4} {\mathbb Z}^{2}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.