L11n400

From Knot Atlas
Jump to: navigation, search

L11n399.gif

L11n399

L11n401.gif

L11n401

Contents

L11n400.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n400 at Knotilus!


Link Presentations

[edit Notes on L11n400's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X15,22,16,19 X7,20,8,21 X19,8,20,9 X18,14,5,13 X14,12,15,11 X12,18,13,17 X21,16,22,17 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, -9, 3}, {10, -1, -4, 5, 11, -2, 7, -8, 6, -7, -3, 9, 8, -6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n400 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(3)-1) \left(t(3)^4+t(1) t(2) t(3)^3-t(2) t(3)^3+t(3)^3+t(1) t(3)^2-t(1) t(2) t(3)^2+t(2) t(3)^2-t(3)^2-t(1) t(3)+t(1) t(2) t(3)+t(3)+t(1) t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}} (db)
Jones polynomial -q^2+3 q-5+6 q^{-1} -6 q^{-2} +6 q^{-3} -4 q^{-4} +3 q^{-5} + q^{-6} + q^{-8} (db)
Signature -2 (db)
HOMFLY-PT polynomial 2 a^8 z^{-2} +a^8-2 z^2 a^6-5 a^6 z^{-2} -7 a^6+3 z^2 a^4+4 a^4 z^{-2} +6 a^4+z^6 a^2+4 z^4 a^2+5 z^2 a^2-a^2 z^{-2} +a^2-z^4-2 z^2-1 (db)
Kauffman polynomial z^8 a^8-8 z^6 a^8+21 z^4 a^8-24 z^2 a^8-2 a^8 z^{-2} +12 a^8+z^7 a^7-10 z^5 a^7+25 z^3 a^7-21 z a^7+5 a^7 z^{-1} +z^8 a^6-11 z^6 a^6+35 z^4 a^6-41 z^2 a^6-5 a^6 z^{-2} +23 a^6+2 z^7 a^5-15 z^5 a^5+42 z^3 a^5-35 z a^5+9 a^5 z^{-1} +z^8 a^4-3 z^6 a^4+9 z^4 a^4-12 z^2 a^4-4 a^4 z^{-2} +12 a^4+4 z^7 a^3-11 z^5 a^3+17 z^3 a^3-15 z a^3+5 a^3 z^{-1} +z^8 a^2+3 z^6 a^2-12 z^4 a^2+8 z^2 a^2-a^2 z^{-2} -a^2+3 z^7 a-5 z^5 a-2 z^3 a+a z^{-1} +3 z^6-7 z^4+3 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          2 2
1         31 -2
-1        32  1
-3       44   0
-5     132    0
-7     24     2
-9   133      -1
-11    4       4
-13  1         1
-151           1
-171           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1 i=1
r=-8 {\mathbb Z} {\mathbb Z}
r=-7
r=-6 {\mathbb Z}
r=-5 {\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}^{4} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n399.gif

L11n399

L11n401.gif

L11n401