# L11n400

## Contents (Knotscape image) See the full Thistlethwaite Link Table (up to 11 crossings). Visit L11n400 at Knotilus!

### Polynomial invariants

 Multivariable Alexander Polynomial (in $u$, $v$, $w$, ...) $\frac{(t(3)-1) \left(t(3)^4+t(1) t(2) t(3)^3-t(2) t(3)^3+t(3)^3+t(1) t(3)^2-t(1) t(2) t(3)^2+t(2) t(3)^2-t(3)^2-t(1) t(3)+t(1) t(2) t(3)+t(3)+t(1) t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}}$ (db) Jones polynomial $-q^2+3 q-5+6 q^{-1} -6 q^{-2} +6 q^{-3} -4 q^{-4} +3 q^{-5} + q^{-6} + q^{-8}$ (db) Signature -2 (db) HOMFLY-PT polynomial $2 a^8 z^{-2} +a^8-2 z^2 a^6-5 a^6 z^{-2} -7 a^6+3 z^2 a^4+4 a^4 z^{-2} +6 a^4+z^6 a^2+4 z^4 a^2+5 z^2 a^2-a^2 z^{-2} +a^2-z^4-2 z^2-1$ (db) Kauffman polynomial $z^8 a^8-8 z^6 a^8+21 z^4 a^8-24 z^2 a^8-2 a^8 z^{-2} +12 a^8+z^7 a^7-10 z^5 a^7+25 z^3 a^7-21 z a^7+5 a^7 z^{-1} +z^8 a^6-11 z^6 a^6+35 z^4 a^6-41 z^2 a^6-5 a^6 z^{-2} +23 a^6+2 z^7 a^5-15 z^5 a^5+42 z^3 a^5-35 z a^5+9 a^5 z^{-1} +z^8 a^4-3 z^6 a^4+9 z^4 a^4-12 z^2 a^4-4 a^4 z^{-2} +12 a^4+4 z^7 a^3-11 z^5 a^3+17 z^3 a^3-15 z a^3+5 a^3 z^{-1} +z^8 a^2+3 z^6 a^2-12 z^4 a^2+8 z^2 a^2-a^2 z^{-2} -a^2+3 z^7 a-5 z^5 a-2 z^3 a+a z^{-1} +3 z^6-7 z^4+3 z^2-1+z^5 a^{-1} -2 z^3 a^{-1} +z a^{-1}$ (db)

### Khovanov Homology

The coefficients of the monomials $t^rq^j$ are shown, along with their alternating sums $\chi$ (fixed $j$, alternation over $r$).
 \ r \ j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          2 2
1         31 -2
-1        32  1
-3       44   0
-5     132    0
-7     24     2
-9   133      -1
-11    4       4
-13  1         1
-151           1
-171           1
Integral Khovanov Homology $\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}$ $i=-3$ $i=-1$ $i=1$ $r=-8$ ${\mathbb Z}$ ${\mathbb Z}$ $r=-7$ $r=-6$ ${\mathbb Z}$ $r=-5$ ${\mathbb Z}_2$ ${\mathbb Z}$ $r=-4$ ${\mathbb Z}^{4}$ ${\mathbb Z}^{3}$ $r=-3$ ${\mathbb Z}^{3}\oplus{\mathbb Z}_2$ ${\mathbb Z}^{2}$ ${\mathbb Z}$ $r=-2$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=-1$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}$ ${\mathbb Z}^{4}$ $r=0$ ${\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{3}$ $r=1$ ${\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3}$ ${\mathbb Z}^{3}$ $r=2$ ${\mathbb Z}\oplus{\mathbb Z}_2^{2}$ ${\mathbb Z}^{2}$ $r=3$ ${\mathbb Z}_2$ ${\mathbb Z}$

### Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory. See A Sample KnotTheory Session.