L11n402

From Knot Atlas
Jump to: navigation, search

L11n401.gif

L11n401

L11n403.gif

L11n403

Contents

L11n402.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n402 at Knotilus!


Link Presentations

[edit Notes on L11n402's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X22,16,19,15 X20,8,21,7 X8,20,9,19 X13,18,14,5 X11,14,12,15 X17,12,18,13 X16,22,17,21 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {5, -4, 9, -3}, {10, -1, 4, -5, 11, -2, -7, 8, -6, 7, 3, -9, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n402 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(w-1) \left(u v w^3-u v w^2+u v w-u v-2 u w^3+u w^2-u w-v w^3+v w^2-2 v w-w^4+w^3-w^2+w\right)}{\sqrt{u} \sqrt{v} w^{5/2}} (db)
Jones polynomial -2 q^{-6} +5 q^{-5} -8 q^{-4} +q^3+11 q^{-3} -2 q^2-10 q^{-2} +6 q+11 q^{-1} -8 (db)
Signature -2 (db)
HOMFLY-PT polynomial -a^6 z^{-2} -a^6-z^4 a^4+z^2 a^4+4 a^4 z^{-2} +6 a^4+z^6 a^2+2 z^4 a^2-2 z^2 a^2-5 a^2 z^{-2} -7 a^2-2 z^4-4 z^2+2 z^{-2} +z^2 a^{-2} +2 a^{-2} (db)
Kauffman polynomial a^3 z^9+a z^9+4 a^4 z^8+7 a^2 z^8+3 z^8+4 a^5 z^7+8 a^3 z^7+6 a z^7+2 z^7 a^{-1} +a^6 z^6-9 a^4 z^6-19 a^2 z^6+z^6 a^{-2} -8 z^6-9 a^5 z^5-29 a^3 z^5-25 a z^5-5 z^5 a^{-1} +4 a^6 z^4+19 a^4 z^4+27 a^2 z^4-4 z^4 a^{-2} +8 z^4+3 a^7 z^3+20 a^5 z^3+43 a^3 z^3+28 a z^3+2 z^3 a^{-1} -4 a^6 z^2-24 a^4 z^2-34 a^2 z^2+5 z^2 a^{-2} -9 z^2-3 a^7 z-17 a^5 z-33 a^3 z-18 a z+z a^{-1} +3 a^6+16 a^4+21 a^2-2 a^{-2} +7+a^7 z^{-1} +5 a^5 z^{-1} +9 a^3 z^{-1} +5 a z^{-1} -a^6 z^{-2} -4 a^4 z^{-2} -5 a^2 z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-5-4-3-2-101234χ
7         11
5        21-1
3       4  4
1      42  -2
-1     74   3
-3    56    1
-5   65     1
-7  25      3
-9 36       -3
-11 3        3
-132         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1
r=-5 {\mathbb Z}^{2}
r=-4 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}
r=-3 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{7}
r=1 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=3 {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n401.gif

L11n401

L11n403.gif

L11n403