L11n413

From Knot Atlas
Jump to: navigation, search

L11n412.gif

L11n412

L11n414.gif

L11n414

Contents

L11n413.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n413 at Knotilus!


Link Presentations

[edit Notes on L11n413's Link Presentations]

Planar diagram presentation X8192 X5,15,6,14 X10,3,11,4 X13,5,14,4 X2738 X6,9,1,10 X11,18,12,19 X17,12,18,7 X20,16,21,15 X22,20,13,19 X16,22,17,21
Gauss code {1, -5, 3, 4, -2, -6}, {5, -1, 6, -3, -7, 8}, {-4, 2, 9, -11, -8, 7, 10, -9, 11, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n413 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(1)^2 t(3)^3-t(1) t(2)^2 t(3)^2-t(1) t(3)^2-t(1)^2 t(2) t(3)^2+2 t(1) t(2) t(3)^2-t(2) t(3)^2+t(1) t(2)^2 t(3)+t(1) t(3)+t(1)^2 t(2) t(3)-2 t(1) t(2) t(3)+t(2) t(3)-t(2)^2}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial -q^5+2 q^4-3 q^3+4 q^2-4 q+4-2 q^{-1} +2 q^{-2} + q^{-3} + q^{-5} (db)
Signature 0 (db)
HOMFLY-PT polynomial z^2 a^4+2 a^4 z^{-2} +3 a^4-z^4 a^2-6 z^2 a^2-5 a^2 z^{-2} -9 a^2+z^4+3 z^2+4 z^{-2} +6+z^4 a^{-2} +2 z^2 a^{-2} - a^{-2} z^{-2} + a^{-2} -z^2 a^{-4} - a^{-4} (db)
Kauffman polynomial a^4 z^8+a^2 z^8+z^8 a^{-2} +z^8+a^3 z^7+2 a z^7+3 z^7 a^{-1} +2 z^7 a^{-3} -8 a^4 z^6-10 a^2 z^6-2 z^6 a^{-2} +2 z^6 a^{-4} -6 z^6-9 a^3 z^5-16 a z^5-14 z^5 a^{-1} -6 z^5 a^{-3} +z^5 a^{-5} +21 a^4 z^4+31 a^2 z^4-z^4 a^{-2} -6 z^4 a^{-4} +15 z^4+22 a^3 z^3+41 a z^3+26 z^3 a^{-1} +4 z^3 a^{-3} -3 z^3 a^{-5} -23 a^4 z^2-39 a^2 z^2+3 z^2 a^{-2} +3 z^2 a^{-4} -16 z^2-19 a^3 z-35 a z-19 z a^{-1} -2 z a^{-3} +z a^{-5} +11 a^4+22 a^2- a^{-4} +13+5 a^3 z^{-1} +9 a z^{-1} +5 a^{-1} z^{-1} + a^{-3} z^{-1} -2 a^4 z^{-2} -5 a^2 z^{-2} - a^{-2} z^{-2} -4 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          1 1
7         21 -1
5        21  1
3       22   0
1     132    0
-1     24     2
-3   121      0
-5    3       3
-7  1         1
-91           1
-111           1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-1 i=1 i=3
r=-6 {\mathbb Z} {\mathbb Z}
r=-5
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=0 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{3}
r=1 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=3 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n412.gif

L11n412

L11n414.gif

L11n414