L11n414

From Knot Atlas
Jump to: navigation, search

L11n413.gif

L11n413

L11n415.gif

L11n415

Contents

L11n414.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n414 at Knotilus!


Link Presentations

[edit Notes on L11n414's Link Presentations]

Planar diagram presentation X8192 X5,15,6,14 X10,3,11,4 X13,5,14,4 X2738 X6,9,1,10 X18,12,19,11 X12,18,7,17 X15,20,16,21 X19,22,20,13 X21,16,22,17
Gauss code {1, -5, 3, 4, -2, -6}, {5, -1, 6, -3, 7, -8}, {-4, 2, -9, 11, 8, -7, -10, 9, -11, 10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n414 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{-t(1) t(3)^3+t(1) t(2) t(3)^3-t(2) t(3)^3+t(1)^2 t(3)^2+t(2)^2 t(3)^2-t(1)^2 t(3)-t(2)^2 t(3)+t(1) t(2)^2+t(1)^2 t(2)-t(1) t(2)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial q^3-q^2+2 q-1+2 q^{-1} + q^{-3} + q^{-4} - q^{-5} + q^{-6} - q^{-7} (db)
Signature -2 (db)
HOMFLY-PT polynomial a^6 \left(-z^2\right)-a^6 z^{-2} -2 a^6+a^4 z^4+5 a^4 z^2+4 a^4 z^{-2} +8 a^4-a^2 z^4-5 a^2 z^2-5 a^2 z^{-2} +z^2 a^{-2} -8 a^2+2 a^{-2} -z^4-3 z^2+2 z^{-2} (db)
Kauffman polynomial a^7 z^7-6 a^7 z^5+10 a^7 z^3-5 a^7 z+a^7 z^{-1} +a^6 z^8-6 a^6 z^6+10 a^6 z^4-7 a^6 z^2-a^6 z^{-2} +4 a^6+2 a^5 z^7-14 a^5 z^5+28 a^5 z^3-21 a^5 z+5 a^5 z^{-1} +a^4 z^8-8 a^4 z^6+20 a^4 z^4-25 a^4 z^2-4 a^4 z^{-2} +17 a^4+2 a^3 z^7-16 a^3 z^5+37 a^3 z^3-33 a^3 z+9 a^3 z^{-1} +a^2 z^8-8 a^2 z^6+z^6 a^{-2} +22 a^2 z^4-5 z^4 a^{-2} -31 a^2 z^2+6 z^2 a^{-2} -5 a^2 z^{-2} +20 a^2-2 a^{-2} +2 a z^7+z^7 a^{-1} -12 a z^5-4 z^5 a^{-1} +21 a z^3+2 z^3 a^{-1} -16 a z+z a^{-1} +5 a z^{-1} +z^8-5 z^6+7 z^4-7 z^2-2 z^{-2} +6 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5          110
3         1  1
1       111  1
-1      131   1
-3     1 1    2
-5    142     1
-7   1 1      2
-9   11       0
-11 11         0
-13            0
-151           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-3 i=-1 i=1
r=-7 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{4} {\mathbb Z}
r=-1 {\mathbb Z}^{2} {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n413.gif

L11n413

L11n415.gif

L11n415