L11n415

From Knot Atlas
Jump to: navigation, search

L11n414.gif

L11n414

L11n416.gif

L11n416

Contents

L11n415.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n415 at Knotilus!


Link Presentations

[edit Notes on L11n415's Link Presentations]

Planar diagram presentation X8192 X5,15,6,14 X10,3,11,4 X13,5,14,4 X2738 X6,9,1,10 X18,12,19,11 X12,18,7,17 X20,16,21,15 X22,20,13,19 X16,22,17,21
Gauss code {1, -5, 3, 4, -2, -6}, {5, -1, 6, -3, 7, -8}, {-4, 2, 9, -11, 8, -7, 10, -9, 11, -10}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n415 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{2 u^2 v w^2-2 u^2 v w+u^2 v-u^2 w^2+u^2 w+2 u v^2 w^2-2 u v^2 w+u v^2+u v w^3-4 u v w^2+4 u v w-u v-u w^3+2 u w^2-2 u w-v^2 w^2+v^2 w-v w^3+2 v w^2-2 v w}{u v w^{3/2}} (db)
Jones polynomial -q^8+3 q^7-6 q^6+9 q^5-11 q^4+12 q^3-10 q^2+9 q+3 q^{-1} -4 (db)
Signature 2 (db)
HOMFLY-PT polynomial - a^{-8} +3 z^2 a^{-6} - a^{-6} z^{-2} +2 a^{-6} -2 z^4 a^{-4} -z^2 a^{-4} +4 a^{-4} z^{-2} +4 a^{-4} -3 z^4 a^{-2} -8 z^2 a^{-2} -5 a^{-2} z^{-2} -10 a^{-2} +3 z^2+2 z^{-2} +5 (db)
Kauffman polynomial z^9 a^{-3} +z^9 a^{-5} +4 z^8 a^{-2} +7 z^8 a^{-4} +3 z^8 a^{-6} +3 z^7 a^{-1} +7 z^7 a^{-3} +8 z^7 a^{-5} +4 z^7 a^{-7} -14 z^6 a^{-2} -17 z^6 a^{-4} +3 z^6 a^{-8} -9 z^5 a^{-1} -28 z^5 a^{-3} -26 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} +32 z^4 a^{-2} +23 z^4 a^{-4} -9 z^4 a^{-6} -6 z^4 a^{-8} +6 z^4+18 z^3 a^{-1} +48 z^3 a^{-3} +33 z^3 a^{-5} +z^3 a^{-7} -2 z^3 a^{-9} -38 z^2 a^{-2} -19 z^2 a^{-4} +6 z^2 a^{-6} +3 z^2 a^{-8} -16 z^2-19 z a^{-1} -35 z a^{-3} -19 z a^{-5} -2 z a^{-7} +z a^{-9} +22 a^{-2} +13 a^{-4} - a^{-8} +11+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-101234567χ
17         1-1
15        2 2
13       41 -3
11      52  3
9     75   -2
7    54    1
5   57     2
3  45      -1
1 16       5
-123        -1
-33         3
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3
r=-2 {\mathbb Z}^{3} {\mathbb Z}^{2}
r=-1 {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{4}
r=1 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=2 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=3 {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{7}
r=4 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{5}
r=5 {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} {\mathbb Z}^{4}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=7 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n414.gif

L11n414

L11n416.gif

L11n416