L11n432

From Knot Atlas
Jump to: navigation, search

L11n431.gif

L11n431

L11n433.gif

L11n433

Contents

L11n432.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n432 at Knotilus!


Link Presentations

[edit Notes on L11n432's Link Presentations]

Planar diagram presentation X8192 X14,4,15,3 X12,14,7,13 X2738 X22,10,13,9 X6,22,1,21 X15,20,16,21 X5,17,6,16 X11,19,12,18 X17,11,18,10 X19,5,20,4
Gauss code {1, -4, 2, 11, -8, -6}, {4, -1, 5, 10, -9, -3}, {3, -2, -7, 8, -10, 9, -11, 7, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n432 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(t(1) t(2)+t(3)) \left(-t(1) t(3)^2+t(1) t(2) t(3)^2-t(2) t(3)^2+t(1)+t(2)-1\right)}{t(1) t(2) t(3)^{3/2}} (db)
Jones polynomial q^9-q^8+q^7+q^5+q^4+q^2-q+1 (db)
Signature 3 (db)
HOMFLY-PT polynomial -z^6 a^{-4} +z^4 a^{-2} -5 z^4 a^{-4} +4 z^2 a^{-2} -5 z^2 a^{-4} +z^2 a^{-8} +2 a^{-2} -3 a^{-6} + a^{-8} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} (db)
Kauffman polynomial z^6 a^{-10} -5 z^4 a^{-10} +5 z^2 a^{-10} +z^7 a^{-9} -5 z^5 a^{-9} +5 z^3 a^{-9} +z^8 a^{-8} -7 z^6 a^{-8} +16 z^4 a^{-8} -17 z^2 a^{-8} - a^{-8} z^{-2} +7 a^{-8} +z^7 a^{-7} -7 z^5 a^{-7} +13 z^3 a^{-7} -9 z a^{-7} +2 a^{-7} z^{-1} +z^8 a^{-6} -8 z^6 a^{-6} +21 z^4 a^{-6} -25 z^2 a^{-6} -2 a^{-6} z^{-2} +11 a^{-6} +z^7 a^{-5} -7 z^5 a^{-5} +13 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +z^6 a^{-4} -5 z^4 a^{-4} +3 z^2 a^{-4} - a^{-4} z^{-2} +3 a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +5 z^3 a^{-3} +z^6 a^{-2} -5 z^4 a^{-2} +6 z^2 a^{-2} -2 a^{-2} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
19          11
17         110
15       11  0
13      111  1
11     131   1
9    211    2
7   142     1
5  111      1
3 121       0
1           0
-11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=1 i=3 i=5
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{4}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=3 {\mathbb Z}^{2} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}
r=8 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n431.gif

L11n431

L11n433.gif

L11n433