L11n433

From Knot Atlas
Jump to: navigation, search

L11n432.gif

L11n432

L11n434.gif

L11n434

Contents

L11n433.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n433 at Knotilus!


Link Presentations

[edit Notes on L11n433's Link Presentations]

Planar diagram presentation X8192 X14,4,15,3 X12,14,7,13 X2738 X22,10,13,9 X6,22,1,21 X20,16,21,15 X5,17,6,16 X11,19,12,18 X17,11,18,10 X19,5,20,4
Gauss code {1, -4, 2, 11, -8, -6}, {4, -1, 5, 10, -9, -3}, {3, -2, 7, 8, -10, 9, -11, -7, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n433 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u v w+1) \left(u v w^2-u w^2+u-v w^2+v-1\right)}{u v w^{3/2}} (db)
Jones polynomial q^{10}-q^9+q^8-q^7+q^6+q^5+2 q^3-q^2+q (db)
Signature 5 (db)
HOMFLY-PT polynomial -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -16 z^4 a^{-6} +6 z^4 a^{-8} +10 z^2 a^{-4} -17 z^2 a^{-6} +8 z^2 a^{-8} -z^2 a^{-10} +6 a^{-4} -9 a^{-6} +3 a^{-8} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} (db)
Kauffman polynomial z^4 a^{-12} -3 z^2 a^{-12} +z^5 a^{-11} -3 z^3 a^{-11} +z^6 a^{-10} -5 z^4 a^{-10} +5 z^2 a^{-10} -2 a^{-10} +z^7 a^{-9} -6 z^5 a^{-9} +7 z^3 a^{-9} +2 z^8 a^{-8} -13 z^6 a^{-8} +22 z^4 a^{-8} -11 z^2 a^{-8} - a^{-8} z^{-2} +3 a^{-8} +z^9 a^{-7} -5 z^7 a^{-7} +z^5 a^{-7} +13 z^3 a^{-7} -9 z a^{-7} +2 a^{-7} z^{-1} +3 z^8 a^{-6} -21 z^6 a^{-6} +44 z^4 a^{-6} -35 z^2 a^{-6} -2 a^{-6} z^{-2} +11 a^{-6} +z^9 a^{-5} -6 z^7 a^{-5} +8 z^5 a^{-5} +3 z^3 a^{-5} -9 z a^{-5} +2 a^{-5} z^{-1} +z^8 a^{-4} -7 z^6 a^{-4} +16 z^4 a^{-4} -16 z^2 a^{-4} - a^{-4} z^{-2} +7 a^{-4} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-2-1012345678χ
21          11
19         110
17       11  0
15      121  0
13     121   0
11    112    2
9   131     1
7  112      2
5 12        1
3           0
11          1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=3 i=5 i=7
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z}^{2} {\mathbb Z}
r=1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=2 {\mathbb Z}^{2} {\mathbb Z}^{3}\oplus{\mathbb Z}_2 {\mathbb Z}
r=3 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=4 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=5 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=6 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=7 {\mathbb Z}_2 {\mathbb Z}
r=8 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n432.gif

L11n432

L11n434.gif

L11n434