L11n44

From Knot Atlas
Jump to: navigation, search

L11n43.gif

L11n43

L11n45.gif

L11n45

Contents

L11n44.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n44 at Knotilus!


Link Presentations

[edit Notes on L11n44's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,14,6,15 X3849 X9,18,10,19 X11,20,12,21 X13,22,14,5 X19,10,20,11 X21,12,22,13 X15,2,16,3
Gauss code {1, 11, -5, -3}, {-4, -1, 2, 5, -6, 9, -7, 10, -8, 4, -11, -2, 3, 6, -9, 7, -10, 8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L11n44 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v^7-1}{\sqrt{u} v^{7/2}} (db)
Jones polynomial -\frac{1}{q^{9/2}}-\frac{1}{q^{13/2}}-\frac{1}{q^{17/2}}+\frac{1}{q^{27/2}} (db)
Signature -9 (db)
HOMFLY-PT polynomial -z^3 a^{13}-4 z a^{13}-3 a^{13} z^{-1} +z^7 a^{11}+8 z^5 a^{11}+21 z^3 a^{11}+21 z a^{11}+7 a^{11} z^{-1} -z^9 a^9-9 z^7 a^9-28 z^5 a^9-36 z^3 a^9-19 z a^9-4 a^9 z^{-1} (db)
Kauffman polynomial a^{18}+a^{13} z^5-6 a^{13} z^3+9 a^{13} z-3 a^{13} z^{-1} +a^{12} z^8-8 a^{12} z^6+21 a^{12} z^4-21 a^{12} z^2+7 a^{12}+a^{11} z^9-9 a^{11} z^7+29 a^{11} z^5-42 a^{11} z^3+28 a^{11} z-7 a^{11} z^{-1} +a^{10} z^8-8 a^{10} z^6+21 a^{10} z^4-21 a^{10} z^2+7 a^{10}+a^9 z^9-9 a^9 z^7+28 a^9 z^5-36 a^9 z^3+19 a^9 z-4 a^9 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-8         11
-10         11
-12       1  1
-14     1    1
-16     21   1
-18   1      1
-20   11     0
-22 11       0
-24 11       0
-261         -1
-281         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-10 i=-8 i=-6
r=-9 {\mathbb Z} {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z} {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n43.gif

L11n43

L11n45.gif

L11n45