L11n48

From Knot Atlas
Jump to: navigation, search

L11n47.gif

L11n47

L11n49.gif

L11n49

Contents

L11n48.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n48 at Knotilus!


Link Presentations

[edit Notes on L11n48's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X19,1,20,4 X5,14,6,15 X3849 X9,16,10,17 X15,10,16,11 X11,20,12,21 X13,22,14,5 X21,12,22,13 X2,18,3,17
Gauss code {1, -11, -5, 3}, {-4, -1, 2, 5, -6, 7, -8, 10, -9, 4, -7, 6, 11, -2, -3, 8, -10, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n48 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{(t(1)-1) (t(2)-1) \left(t(2)^2+1\right)}{\sqrt{t(1)} t(2)^{3/2}} (db)
Jones polynomial -\frac{1}{q^{3/2}}-\frac{2}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{2}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}} (db)
Signature -3 (db)
HOMFLY-PT polynomial a^9 \left(-z^3\right)-3 a^9 z-2 a^9 z^{-1} +a^7 z^5+5 a^7 z^3+8 a^7 z+4 a^7 z^{-1} -a^5 z^3-2 a^5 z-a^5 z^{-1} -a^3 z^3-3 a^3 z-a^3 z^{-1} (db)
Kauffman polynomial a^{12} z^6-5 a^{12} z^4+6 a^{12} z^2-2 a^{12}+a^{11} z^7-4 a^{11} z^5+2 a^{11} z^3+a^{11} z+a^{10} z^8-4 a^{10} z^6+2 a^{10} z^4+2 a^{10} z^2-a^{10}+a^9 z^9-6 a^9 z^7+13 a^9 z^5-15 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +2 a^8 z^8-12 a^8 z^6+24 a^8 z^4-20 a^8 z^2+6 a^8+a^7 z^9-7 a^7 z^7+18 a^7 z^5-22 a^7 z^3+15 a^7 z-4 a^7 z^{-1} +a^6 z^8-7 a^6 z^6+17 a^6 z^4-15 a^6 z^2+5 a^6+a^5 z^5-4 a^5 z^3+5 a^5 z-a^5 z^{-1} +a^4 z^2-a^4+a^3 z^3-3 a^3 z+a^3 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         11
-4        121
-6       1 12
-8      22  0
-10     21   1
-12    131   1
-14   22     0
-16   11     0
-18 12       -1
-20          0
-221         -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4 i=-2
r=-9 {\mathbb Z}
r=-8 {\mathbb Z}_2 {\mathbb Z}
r=-7 {\mathbb Z}^{2}
r=-6 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-3 {\mathbb Z} {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-2 {\mathbb Z}_2 {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-1 {\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}^{2} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n47.gif

L11n47

L11n49.gif

L11n49