L11n58

From Knot Atlas
Jump to: navigation, search

L11n57.gif

L11n57

L11n59.gif

L11n59

Contents

L11n58.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n58 at Knotilus!


Link Presentations

[edit Notes on L11n58's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,14,8,15 X18,11,19,12 X22,19,5,20 X20,15,21,16 X16,21,17,22 X12,17,13,18 X13,8,14,9 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, -3, 9, 11, -2, 4, -8, -9, 3, 6, -7, 8, -4, 5, -6, 7, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n58 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{t(2)^5+3 t(1) t(2)^4-3 t(2)^4-6 t(1) t(2)^3+6 t(2)^3+6 t(1) t(2)^2-6 t(2)^2-3 t(1) t(2)+3 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} (db)
Jones polynomial -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{2}{q^{23/2}}-\frac{5}{q^{21/2}}+\frac{9}{q^{19/2}}-\frac{12}{q^{17/2}}+\frac{13}{q^{15/2}}-\frac{13}{q^{13/2}}+\frac{10}{q^{11/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -2 z a^{11}-2 a^{11} z^{-1} +5 z^3 a^9+11 z a^9+5 a^9 z^{-1} -3 z^5 a^7-10 z^3 a^7-10 z a^7-3 a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5 (db)
Kauffman polynomial -3 z^4 a^{14}+4 z^2 a^{14}-a^{14}-z^7 a^{13}-3 z^5 a^{13}+4 z^3 a^{13}-z a^{13}-2 z^8 a^{12}-z^6 a^{12}+z^4 a^{12}+z^2 a^{12}-z^9 a^{11}-6 z^7 a^{11}+10 z^5 a^{11}-6 z^3 a^{11}+4 z a^{11}-2 a^{11} z^{-1} -6 z^8 a^{10}+z^6 a^{10}+16 z^4 a^{10}-17 z^2 a^{10}+5 a^{10}-z^9 a^9-11 z^7 a^9+27 z^5 a^9-26 z^3 a^9+17 z a^9-5 a^9 z^{-1} -4 z^8 a^8-z^6 a^8+16 z^4 a^8-15 z^2 a^8+5 a^8-6 z^7 a^7+13 z^5 a^7-14 z^3 a^7+11 z a^7-3 a^7 z^{-1} -3 z^6 a^6+4 z^4 a^6-z^2 a^6-z^5 a^5+2 z^3 a^5-z a^5 (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         11
-6        31-2
-8       5  5
-10      53  -2
-12     85   3
-14    66    0
-16   67     -1
-18  36      3
-20 26       -4
-22 3        3
-242         -2
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-6 i=-4
r=-9 {\mathbb Z}^{2}
r=-8 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=-6 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-5 {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{6} {\mathbb Z}^{6}
r=-4 {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} {\mathbb Z}^{8}
r=-3 {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} {\mathbb Z}^{5}
r=-1 {\mathbb Z}_2^{3} {\mathbb Z}^{3}
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n57.gif

L11n57

L11n59.gif

L11n59