L11n68

From Knot Atlas
Jump to: navigation, search

L11n67.gif

L11n67

L11n69.gif

L11n69

Contents

L11n68.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n68 at Knotilus!


Link Presentations

[edit Notes on L11n68's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,16,8,17 X17,22,18,5 X11,18,12,19 X13,20,14,21 X19,12,20,13 X21,14,22,15 X15,8,16,9 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, -3, 9, 11, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11n68 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{u v^5-u v^3+u v^2-u v+u+v^5-v^4+v^3-v^2+1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{1}{q^{7/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{17/2}}+\frac{2}{q^{19/2}}-\frac{2}{q^{21/2}}+\frac{2}{q^{23/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{27/2}} (db)
Signature -5 (db)
HOMFLY-PT polynomial -z a^{13}-2 a^{13} z^{-1} +2 z^3 a^{11}+6 z a^{11}+4 a^{11} z^{-1} +z^3 a^9+z a^9-a^9 z^{-1} -z^7 a^7-7 z^5 a^7-14 z^3 a^7-8 z a^7-a^7 z^{-1} (db)
Kauffman polynomial -z^6 a^{16}+5 z^4 a^{16}-6 z^2 a^{16}+2 a^{16}-z^7 a^{15}+4 z^5 a^{15}-2 z^3 a^{15}-z a^{15}-z^8 a^{14}+4 z^6 a^{14}-2 z^4 a^{14}-2 z^2 a^{14}+a^{14}-z^9 a^{13}+6 z^7 a^{13}-13 z^5 a^{13}+16 z^3 a^{13}-10 z a^{13}+2 a^{13} z^{-1} -2 z^8 a^{12}+13 z^6 a^{12}-28 z^4 a^{12}+24 z^2 a^{12}-6 a^{12}-z^9 a^{11}+8 z^7 a^{11}-23 z^5 a^{11}+30 z^3 a^{11}-18 z a^{11}+4 a^{11} z^{-1} -z^8 a^{10}+8 z^6 a^{10}-20 z^4 a^{10}+18 z^2 a^{10}-5 a^{10}+z^5 a^9-2 z^3 a^9-z a^9+a^9 z^{-1} +z^4 a^8-2 z^2 a^8+a^8-z^7 a^7+7 z^5 a^7-14 z^3 a^7+8 z a^7-a^7 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-6           11
-8           11
-10        11  0
-12       1    1
-14      231   0
-16     2      2
-18    131     1
-20   22       0
-22   11       0
-24 12         -1
-26            0
-281           -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-11 {\mathbb Z}
r=-10 {\mathbb Z}_2 {\mathbb Z}
r=-9 {\mathbb Z}^{2}
r=-8 {\mathbb Z}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-7 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-5 {\mathbb Z} {\mathbb Z}_2^{2} {\mathbb Z}^{2}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{3} {\mathbb Z}
r=-3 {\mathbb Z} {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n67.gif

L11n67

L11n69.gif

L11n69