L8n2

From Knot Atlas
Jump to: navigation, search

L8n1.gif

L8n1

L8n3.gif

L8n3

Contents

L8n2.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L8n2 at Knotilus!

L8n2 is 8^2_{15} in the Rolfsen table of links.


Link Presentations

[edit Notes on L8n2's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X15,1,16,4 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X2,14,3,13
Gauss code {1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation L8n2 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) -\frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}} (db)
Jones polynomial -q^{5/2}+q^{3/2}-2 \sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{1}{q^{7/2}} (db)
Signature 1 (db)
HOMFLY-PT polynomial z a^3+a^3 z^{-1} -z^3 a-3 z a-2 a z^{-1} +2 z a^{-1} +2 a^{-1} z^{-1} - a^{-3} z^{-1} (db)
Kauffman polynomial -a^2 z^6-z^6-a^3 z^5-2 a z^5-z^5 a^{-1} +4 a^2 z^4+4 z^4+4 a^3 z^3+8 a z^3+4 z^3 a^{-1} -3 a^2 z^2-z^2 a^{-2} -4 z^2-3 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-4-3-2-1012χ
6      11
4       0
2    21 1
0   12  1
-2   11  0
-4 11    0
-6       0
-81      1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-2 i=0 i=2
r=-4 {\mathbb Z}
r=-3 {\mathbb Z}_2 {\mathbb Z}
r=-2 {\mathbb Z}
r=-1 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=0 {\mathbb Z} {\mathbb Z}^{2}\oplus{\mathbb Z}_2 {\mathbb Z}^{2}
r=1 {\mathbb Z}
r=2 {\mathbb Z}_2 {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L8n1.gif

L8n1

L8n3.gif

L8n3