L9n4

From Knot Atlas
Jump to: navigation, search

L9n3.gif

L9n3

L9n5.gif

L9n5

Contents

L9n4.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9n4 at Knotilus!

L9n4 is 9^2_{43} in the Rolfsen table of links.


Link Presentations

[edit Notes on L9n4's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X3849 X9,16,10,17 X11,18,12,5 X17,10,18,11 X13,2,14,3
Gauss code {1, 9, -5, -3}, {-4, -1, 2, 5, -6, 8, -7, 4, -9, -2, 3, 6, -8, 7}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif
A Morse Link Presentation L9n4 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in u, v, w, ...) \frac{-u v^5-1}{\sqrt{u} v^{5/2}} (db)
Jones polynomial -\frac{1}{q^{7/2}}+\frac{1}{q^{21/2}}-\frac{1}{q^{15/2}}-\frac{1}{q^{11/2}} (db)
Signature -7 (db)
HOMFLY-PT polynomial a^{11} (-z)-2 a^{11} z^{-1} +a^9 z^5+6 a^9 z^3+10 a^9 z+5 a^9 z^{-1} -a^7 z^7-7 a^7 z^5-15 a^7 z^3-11 a^7 z-3 a^7 z^{-1} (db)
Kauffman polynomial -a^{14}-z^3 a^{11}+4 z a^{11}-2 a^{11} z^{-1} -z^6 a^{10}+6 z^4 a^{10}-10 z^2 a^{10}+5 a^{10}-z^7 a^9+7 z^5 a^9-16 z^3 a^9+15 z a^9-5 a^9 z^{-1} -z^6 a^8+6 z^4 a^8-10 z^2 a^8+5 a^8-z^7 a^7+7 z^5 a^7-15 z^3 a^7+11 z a^7-3 a^7 z^{-1} (db)

Khovanov Homology

The coefficients of the monomials t^rq^j are shown, along with their alternating sums \chi (fixed j, alternation over r).   
\ r
  \  
j \
-7-6-5-4-3-2-10χ
-6       11
-8       11
-10     1  1
-12   1    1
-14   21   1
-16 1      1
-18 11     0
-201       -1
-221       -1
Integral Khovanov Homology

(db, data source)

  
\dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} i=-8 i=-6 i=-4
r=-7 {\mathbb Z} {\mathbb Z}
r=-6 {\mathbb Z}_2 {\mathbb Z}\oplus{\mathbb Z}_2 {\mathbb Z}
r=-5 {\mathbb Z}
r=-4 {\mathbb Z}_2 {\mathbb Z}^{2} {\mathbb Z}
r=-3 {\mathbb Z}
r=-2 {\mathbb Z}_2 {\mathbb Z}
r=-1
r=0 {\mathbb Z} {\mathbb Z}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9n3.gif

L9n3

L9n5.gif

L9n5