K11a44: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was |
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit! |
||
<!-- --> <!-- |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
--> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page. |
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
{{Hoste-Thistlethwaite Knot Page| |
{{Hoste-Thistlethwaite Knot Page| |
||
n = 11 | |
n = 11 | |
||
| Line 7: | Line 16: | ||
k = 44 | |
k = 44 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-8,4,-2,5,-11,6,-9,7,-3,8,-6,9,-7,10,-5,11,-10/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-8,4,-2,5,-11,6,-9,7,-3,8,-6,9,-7,10,-5,11,-10/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
same_alexander = [[K11a47]], [[K11a109]], | |
same_alexander = [[K11a47]], [[K11a109]], | |
||
same_jones = [[K11a47]], | |
same_jones = [[K11a47]], | |
||
| Line 31: | Line 46: | ||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> | |
</table> | |
||
coloured_jones_2 = | |
coloured_jones_2 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_3 = | |
coloured_jones_3 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_4 = | |
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_5 = | |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_6 = | |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
||
coloured_jones_7 = | |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
| Line 43: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 44]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 44]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
| Line 59: | Line 74: | ||
-7, 10, -5, 11, -10]</nowiki></pre></td></tr> |
-7, 10, -5, 11, -10]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 44]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 44]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 2, -3, -3, -3, 2, -1, 2, -3, -3, 2, 2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 44]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a44_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 44]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a44_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 44]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 44]][t]</nowiki></pre></td></tr> |
||
Latest revision as of 01:53, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,5,15,6 X2837 X20,10,21,9 X16,11,17,12 X18,13,19,14 X6,15,7,16 X12,17,13,18 X22,20,1,19 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -9, 7, -3, 8, -6, 9, -7, 10, -5, 11, -10 |
| Dowker-Thistlethwaite code | 4 8 14 2 20 16 18 6 12 22 10 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+4 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{t^2-t+1\right\}} |
| Determinant and Signature | { 117, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+6 q^4-12 q^3+16 q^2-18 q+20-16 q^{-1} +13 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-9 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-15 z^2 a^{-2} +3 z^2 a^{-4} +22 z^2-5 a^2-9 a^{-2} +2 a^{-4} +13} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10}+4 a z^9+7 z^9 a^{-1} +3 z^9 a^{-3} +7 a^2 z^8+10 z^8 a^{-2} +4 z^8 a^{-4} +13 z^8+6 a^3 z^7+5 a z^7-2 z^7 a^{-1} +2 z^7 a^{-3} +3 z^7 a^{-5} +3 a^4 z^6-11 a^2 z^6-28 z^6 a^{-2} -8 z^6 a^{-4} +z^6 a^{-6} -33 z^6+a^5 z^5-10 a^3 z^5-25 a z^5-27 z^5 a^{-1} -22 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+11 a^2 z^4+28 z^4 a^{-2} +3 z^4 a^{-4} -3 z^4 a^{-6} +37 z^4-2 a^5 z^3+8 a^3 z^3+31 a z^3+42 z^3 a^{-1} +30 z^3 a^{-3} +9 z^3 a^{-5} +a^4 z^2-11 a^2 z^2-19 z^2 a^{-2} -z^2 a^{-4} +2 z^2 a^{-6} -28 z^2+a^5 z-4 a^3 z-15 a z-21 z a^{-1} -15 z a^{-3} -4 z a^{-5} +5 a^2+9 a^{-2} +2 a^{-4} +13} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+q^{12}-4 q^{10}-q^4+8 q^2+1+6 q^{-2} - q^{-4} -3 q^{-6} -5 q^{-10} + q^{-12} + q^{-18} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+10 q^{72}-10 q^{70}+4 q^{68}+11 q^{66}-32 q^{64}+56 q^{62}-76 q^{60}+72 q^{58}-44 q^{56}-17 q^{54}+110 q^{52}-199 q^{50}+259 q^{48}-246 q^{46}+131 q^{44}+52 q^{42}-273 q^{40}+435 q^{38}-479 q^{36}+360 q^{34}-112 q^{32}-197 q^{30}+437 q^{28}-512 q^{26}+392 q^{24}-123 q^{22}-181 q^{20}+367 q^{18}-368 q^{16}+183 q^{14}+119 q^{12}-385 q^{10}+511 q^8-392 q^6+97 q^4+299 q^2-617+749 q^{-2} -608 q^{-4} +270 q^{-6} +167 q^{-8} -537 q^{-10} +735 q^{-12} -661 q^{-14} +376 q^{-16} +9 q^{-18} -349 q^{-20} +498 q^{-22} -427 q^{-24} +162 q^{-26} +140 q^{-28} -358 q^{-30} +388 q^{-32} -232 q^{-34} -64 q^{-36} +347 q^{-38} -505 q^{-40} +463 q^{-42} -264 q^{-44} -42 q^{-46} +310 q^{-48} -453 q^{-50} +451 q^{-52} -307 q^{-54} +106 q^{-56} +93 q^{-58} -223 q^{-60} +258 q^{-62} -217 q^{-64} +131 q^{-66} -34 q^{-68} -36 q^{-70} +74 q^{-72} -78 q^{-74} +63 q^{-76} -35 q^{-78} +13 q^{-80} +3 q^{-82} -12 q^{-84} +10 q^{-86} -9 q^{-88} +5 q^{-90} -2 q^{-92} + q^{-94} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a44"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+4 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{t^2-t+1\right\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 117, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+6 q^4-12 q^3+16 q^2-18 q+20-16 q^{-1} +13 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-9 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-15 z^2 a^{-2} +3 z^2 a^{-4} +22 z^2-5 a^2-9 a^{-2} +2 a^{-4} +13} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10}+4 a z^9+7 z^9 a^{-1} +3 z^9 a^{-3} +7 a^2 z^8+10 z^8 a^{-2} +4 z^8 a^{-4} +13 z^8+6 a^3 z^7+5 a z^7-2 z^7 a^{-1} +2 z^7 a^{-3} +3 z^7 a^{-5} +3 a^4 z^6-11 a^2 z^6-28 z^6 a^{-2} -8 z^6 a^{-4} +z^6 a^{-6} -33 z^6+a^5 z^5-10 a^3 z^5-25 a z^5-27 z^5 a^{-1} -22 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+11 a^2 z^4+28 z^4 a^{-2} +3 z^4 a^{-4} -3 z^4 a^{-6} +37 z^4-2 a^5 z^3+8 a^3 z^3+31 a z^3+42 z^3 a^{-1} +30 z^3 a^{-3} +9 z^3 a^{-5} +a^4 z^2-11 a^2 z^2-19 z^2 a^{-2} -z^2 a^{-4} +2 z^2 a^{-6} -28 z^2+a^5 z-4 a^3 z-15 a z-21 z a^{-1} -15 z a^{-3} -4 z a^{-5} +5 a^2+9 a^{-2} +2 a^{-4} +13} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a47, K11a109,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11a47,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a44"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-3 q^5+6 q^4-12 q^3+16 q^2-18 q+20-16 q^{-1} +13 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a47, K11a109,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a47,} |
Vassiliev invariants
| V2 and V3: | (3, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of K11a44. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



