K11a109
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X14,5,15,6 X16,8,17,7 X2,10,3,9 X20,11,21,12 X22,13,1,14 X18,16,19,15 X8,18,9,17 X6,19,7,20 X12,21,13,22 |
| Gauss code | 1, -5, 2, -1, 3, -10, 4, -9, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, -6, 11, -7 |
| Dowker-Thistlethwaite code | 4 10 14 16 2 20 22 18 8 6 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6+4 z^4+3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 117, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+7 q^4-12 q^3+17 q^2-18 q+19-16 q^{-1} +12 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +15 z^4-6 a^2 z^2-10 z^2 a^{-2} +2 z^2 a^{-4} +17 z^2-3 a^2-3 a^{-2} +7 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+4 a z^9+8 z^9 a^{-1} +4 z^9 a^{-3} +6 a^2 z^8+13 z^8 a^{-2} +6 z^8 a^{-4} +13 z^8+5 a^3 z^7+a z^7-9 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-9 a^2 z^6-42 z^6 a^{-2} -16 z^6 a^{-4} +z^6 a^{-6} -37 z^6+a^5 z^5-7 a^3 z^5-11 a z^5-10 z^5 a^{-1} -18 z^5 a^{-3} -11 z^5 a^{-5} -5 a^4 z^4+9 a^2 z^4+46 z^4 a^{-2} +13 z^4 a^{-4} -2 z^4 a^{-6} +45 z^4-2 a^5 z^3+3 a^3 z^3+13 a z^3+20 z^3 a^{-1} +19 z^3 a^{-3} +7 z^3 a^{-5} +2 a^4 z^2-8 a^2 z^2-22 z^2 a^{-2} -5 z^2 a^{-4} -27 z^2+a^5 z-a^3 z-6 a z-8 z a^{-1} -4 z a^{-3} +3 a^2+3 a^{-2} +7 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+q^{12}-3 q^{10}+q^8+q^6-2 q^4+5 q^2-2+4 q^{-2} + q^{-4} +3 q^{-8} -4 q^{-10} - q^{-14} - q^{-16} + q^{-18} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+9 q^{72}-8 q^{70}+q^{68}+13 q^{66}-29 q^{64}+47 q^{62}-59 q^{60}+53 q^{58}-30 q^{56}-20 q^{54}+87 q^{52}-151 q^{50}+190 q^{48}-184 q^{46}+111 q^{44}+17 q^{42}-178 q^{40}+321 q^{38}-383 q^{36}+329 q^{34}-167 q^{32}-75 q^{30}+296 q^{28}-427 q^{26}+416 q^{24}-248 q^{22}-q^{20}+233 q^{18}-340 q^{16}+281 q^{14}-81 q^{12}-170 q^{10}+352 q^8-375 q^6+215 q^4+84 q^2-392+602 q^{-2} -592 q^{-4} +372 q^{-6} -11 q^{-8} -369 q^{-10} +626 q^{-12} -669 q^{-14} +501 q^{-16} -172 q^{-18} -178 q^{-20} +435 q^{-22} -489 q^{-24} +346 q^{-26} -84 q^{-28} -187 q^{-30} +334 q^{-32} -310 q^{-34} +123 q^{-36} +138 q^{-38} -351 q^{-40} +438 q^{-42} -346 q^{-44} +100 q^{-46} +172 q^{-48} -392 q^{-50} +469 q^{-52} -393 q^{-54} +203 q^{-56} +24 q^{-58} -208 q^{-60} +303 q^{-62} -291 q^{-64} +199 q^{-66} -76 q^{-68} -33 q^{-70} +95 q^{-72} -115 q^{-74} +96 q^{-76} -55 q^{-78} +22 q^{-80} +7 q^{-82} -18 q^{-84} +17 q^{-86} -14 q^{-88} +7 q^{-90} -3 q^{-92} + q^{-94} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a109"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6+4 z^4+3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 117, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+7 q^4-12 q^3+17 q^2-18 q+19-16 q^{-1} +12 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +15 z^4-6 a^2 z^2-10 z^2 a^{-2} +2 z^2 a^{-4} +17 z^2-3 a^2-3 a^{-2} +7 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+4 a z^9+8 z^9 a^{-1} +4 z^9 a^{-3} +6 a^2 z^8+13 z^8 a^{-2} +6 z^8 a^{-4} +13 z^8+5 a^3 z^7+a z^7-9 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-9 a^2 z^6-42 z^6 a^{-2} -16 z^6 a^{-4} +z^6 a^{-6} -37 z^6+a^5 z^5-7 a^3 z^5-11 a z^5-10 z^5 a^{-1} -18 z^5 a^{-3} -11 z^5 a^{-5} -5 a^4 z^4+9 a^2 z^4+46 z^4 a^{-2} +13 z^4 a^{-4} -2 z^4 a^{-6} +45 z^4-2 a^5 z^3+3 a^3 z^3+13 a z^3+20 z^3 a^{-1} +19 z^3 a^{-3} +7 z^3 a^{-5} +2 a^4 z^2-8 a^2 z^2-22 z^2 a^{-2} -5 z^2 a^{-4} -27 z^2+a^5 z-a^3 z-6 a z-8 z a^{-1} -4 z a^{-3} +3 a^2+3 a^{-2} +7 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a44, K11a47,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a109"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-4 q^5+7 q^4-12 q^3+17 q^2-18 q+19-16 q^{-1} +12 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a44, K11a47,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a109. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



