K11a71: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (3 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- --> |
|||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit! |
|||
<!-- --> |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- --> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<span id="top"></span> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- --> |
|||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page. |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. |
|||
| ⚫ | |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<br style="clear:both" /> |
|||
{{Hoste-Thistlethwaite Knot Page| |
|||
n = 11 | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
t = a | |
|||
k = 71 | |
|||
{{Knot Presentations}} |
|||
| ⚫ | |||
{{3D Invariants}} |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
{{4D Invariants}} |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{{Polynomial Invariants}} |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{{Vassiliev Invariants}} |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
{{Khovanov Homology|table=<table border=1> |
|||
| ⚫ | |||
same_alexander = [[K11a248]], | |
|||
same_jones = [[K11a248]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=12.5%><table cellpadding=0 cellspacing=0> |
<td width=12.5%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.25%>-4</td ><td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=12.5%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow> </td><td>4</td></tr> |
||
| Line 41: | Line 45: | ||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>\textrm{NotAvailable}(q)</math> | |
|||
coloured_jones_3 = <math>\textrm{NotAvailable}(q)</math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> | |
|||
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|||
| ⚫ | |||
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|||
| ⚫ | |||
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
| ⚫ | |||
| ⚫ | |||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 71]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
|||
| ⚫ | |||
| ⚫ | |||
X[2, 10, 3, 9], X[22, 11, 1, 12], X[18, 13, 19, 14], |
X[2, 10, 3, 9], X[22, 11, 1, 12], X[18, 13, 19, 14], |
||
| Line 61: | Line 69: | ||
X[16, 22, 17, 21]]</nowiki></pre></td></tr> |
X[16, 22, 17, 21]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 71]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 71]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, |
||
-7, 10, -8, 11, -6]</nowiki></pre></td></tr> |
-7, 10, -8, 11, -6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 71]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 71]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, -2, 1, -2, 3, -2, 3, -2, 3, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 71]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a71_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 71]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 6 18 34 2 3 4 |
|||
-41 - t + -- - -- + -- + 34 t - 18 t + 6 t - t |
-41 - t + -- - -- + -- + 34 t - 18 t + 6 t - t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 71]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 |
||
1 - 2 z - 2 z - z</nowiki></pre></td></tr> |
1 - 2 z - 2 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 71], Knot[11, Alternating, 248]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 71]], KnotSignature[Knot[11, Alternating, 71]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{159, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 71]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 9 2 3 4 5 6 |
||
-15 + q - -- + - + 22 q - 25 q + 26 q - 23 q + 17 q - 11 q + |
-15 + q - -- + - + 22 q - 25 q + 26 q - 23 q + 17 q - 11 q + |
||
2 q |
2 q |
||
| Line 87: | Line 96: | ||
7 8 |
7 8 |
||
5 q - q</nowiki></pre></td></tr> |
5 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 71], Knot[11, Alternating, 248]}</nowiki></pre></td></tr> |
||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 71]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 3 2 2 4 6 8 12 14 |
||
-1 + q - -- + -- - -- + 5 q - 4 q + 6 q - 2 q + q - 5 q + |
-1 + q - -- + -- - -- + 5 q - 4 q + 6 q - 2 q + q - 5 q + |
||
6 4 2 |
6 4 2 |
||
| Line 98: | Line 107: | ||
16 18 22 24 |
16 18 22 24 |
||
4 q - 2 q + 2 q - q</nowiki></pre></td></tr> |
4 q - 2 q + 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 71]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 |
||
z 3 z 3 z 2 z 8 z 12 z 2 2 5 z |
z 3 z 3 z 2 z 8 z 12 z 2 2 5 z |
||
1 - -- - --- - --- - a z - 4 z - -- - ---- - ----- + a z + ---- + |
1 - -- - --- - --- - a z - 4 z - -- - ---- - ----- + a z + ---- + |
||
| Line 134: | Line 143: | ||
4 2 |
4 2 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 71]], Vassiliev[3][Knot[11, Alternating, 71]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 71]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 3 1 6 3 9 6 q |
||
13 q + 10 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
13 q + 10 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
||
7 4 5 3 3 3 3 2 2 q t t |
7 4 5 3 3 3 3 2 2 q t t |
||
| Line 147: | Line 156: | ||
9 4 11 4 11 5 13 5 13 6 15 6 17 7 |
9 4 11 4 11 5 13 5 13 6 15 6 17 7 |
||
7 q t + 10 q t + 4 q t + 7 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
7 q t + 10 q t + 4 q t + 7 q t + q t + 4 q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> }} |
||
[[Category:Knot Page]] |
|||
Latest revision as of 01:42, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X12,5,13,6 X14,8,15,7 X2,10,3,9 X22,11,1,12 X18,13,19,14 X20,16,21,15 X6,18,7,17 X8,19,9,20 X16,22,17,21 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 12 14 2 22 18 20 6 8 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-18 t^2+34 t-41+34 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6-2 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 159, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+5 q^7-11 q^6+17 q^5-23 q^4+26 q^3-25 q^2+22 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +3 z^4-7 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} +3 z^2+1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +14 z^9 a^{-3} +8 z^9 a^{-5} +17 z^8 a^{-2} +23 z^8 a^{-4} +13 z^8 a^{-6} +7 z^8+4 a z^7-3 z^7 a^{-1} -13 z^7 a^{-3} +5 z^7 a^{-5} +11 z^7 a^{-7} +a^2 z^6-47 z^6 a^{-2} -53 z^6 a^{-4} -17 z^6 a^{-6} +5 z^6 a^{-8} -15 z^6-9 a z^5-14 z^5 a^{-1} -18 z^5 a^{-3} -29 z^5 a^{-5} -15 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+39 z^4 a^{-2} +35 z^4 a^{-4} +5 z^4 a^{-6} -4 z^4 a^{-8} +11 z^4+6 a z^3+14 z^3 a^{-1} +20 z^3 a^{-3} +17 z^3 a^{-5} +5 z^3 a^{-7} +a^2 z^2-12 z^2 a^{-2} -8 z^2 a^{-4} -z^2 a^{-6} -4 z^2-a z-3 z a^{-1} -3 z a^{-3} -z a^{-5} +1 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-2 q^6+3 q^4-2 q^2-1+5 q^{-2} -4 q^{-4} +6 q^{-6} -2 q^{-8} + q^{-12} -5 q^{-14} +4 q^{-16} -2 q^{-18} +2 q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+22 q^{38}-25 q^{36}+14 q^{34}+18 q^{32}-65 q^{30}+127 q^{28}-176 q^{26}+178 q^{24}-110 q^{22}-51 q^{20}+277 q^{18}-495 q^{16}+619 q^{14}-551 q^{12}+254 q^{10}+221 q^8-733 q^6+1094 q^4-1121 q^2+759-102 q^{-2} -637 q^{-4} +1158 q^{-6} -1252 q^{-8} +878 q^{-10} -176 q^{-12} -542 q^{-14} +971 q^{-16} -920 q^{-18} +406 q^{-20} +341 q^{-22} -974 q^{-24} +1199 q^{-26} -873 q^{-28} +94 q^{-30} +840 q^{-32} -1553 q^{-34} +1765 q^{-36} -1353 q^{-38} +450 q^{-40} +627 q^{-42} -1496 q^{-44} +1839 q^{-46} -1553 q^{-48} +761 q^{-50} +212 q^{-52} -989 q^{-54} +1279 q^{-56} -1014 q^{-58} +349 q^{-60} +402 q^{-62} -898 q^{-64} +913 q^{-66} -467 q^{-68} -244 q^{-70} +900 q^{-72} -1206 q^{-74} +1053 q^{-76} -495 q^{-78} -230 q^{-80} +847 q^{-82} -1157 q^{-84} +1079 q^{-86} -685 q^{-88} +156 q^{-90} +320 q^{-92} -610 q^{-94} +664 q^{-96} -522 q^{-98} +289 q^{-100} -49 q^{-102} -126 q^{-104} +202 q^{-106} -205 q^{-108} +147 q^{-110} -76 q^{-112} +22 q^{-114} +16 q^{-116} -28 q^{-118} +27 q^{-120} -20 q^{-122} +10 q^{-124} -4 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a71"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-18 t^2+34 t-41+34 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6-2 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 159, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+5 q^7-11 q^6+17 q^5-23 q^4+26 q^3-25 q^2+22 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +3 z^4-7 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} +3 z^2+1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +14 z^9 a^{-3} +8 z^9 a^{-5} +17 z^8 a^{-2} +23 z^8 a^{-4} +13 z^8 a^{-6} +7 z^8+4 a z^7-3 z^7 a^{-1} -13 z^7 a^{-3} +5 z^7 a^{-5} +11 z^7 a^{-7} +a^2 z^6-47 z^6 a^{-2} -53 z^6 a^{-4} -17 z^6 a^{-6} +5 z^6 a^{-8} -15 z^6-9 a z^5-14 z^5 a^{-1} -18 z^5 a^{-3} -29 z^5 a^{-5} -15 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+39 z^4 a^{-2} +35 z^4 a^{-4} +5 z^4 a^{-6} -4 z^4 a^{-8} +11 z^4+6 a z^3+14 z^3 a^{-1} +20 z^3 a^{-3} +17 z^3 a^{-5} +5 z^3 a^{-7} +a^2 z^2-12 z^2 a^{-2} -8 z^2 a^{-4} -z^2 a^{-6} -4 z^2-a z-3 z a^{-1} -3 z a^{-3} -z a^{-5} +1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a248,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a248,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a71"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-18 t^2+34 t-41+34 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+5 q^7-11 q^6+17 q^5-23 q^4+26 q^3-25 q^2+22 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a248,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a248,} |
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a71. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



