K11a71
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X12,5,13,6 X14,8,15,7 X2,10,3,9 X22,11,1,12 X18,13,19,14 X20,16,21,15 X6,18,7,17 X8,19,9,20 X16,22,17,21 |
| Gauss code | 1, -5, 2, -1, 3, -9, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -6 |
| Dowker-Thistlethwaite code | 4 10 12 14 2 22 18 20 6 8 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-18 t^2+34 t-41+34 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6-2 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 159, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+5 q^7-11 q^6+17 q^5-23 q^4+26 q^3-25 q^2+22 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +3 z^4-7 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} +3 z^2+1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +14 z^9 a^{-3} +8 z^9 a^{-5} +17 z^8 a^{-2} +23 z^8 a^{-4} +13 z^8 a^{-6} +7 z^8+4 a z^7-3 z^7 a^{-1} -13 z^7 a^{-3} +5 z^7 a^{-5} +11 z^7 a^{-7} +a^2 z^6-47 z^6 a^{-2} -53 z^6 a^{-4} -17 z^6 a^{-6} +5 z^6 a^{-8} -15 z^6-9 a z^5-14 z^5 a^{-1} -18 z^5 a^{-3} -29 z^5 a^{-5} -15 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+39 z^4 a^{-2} +35 z^4 a^{-4} +5 z^4 a^{-6} -4 z^4 a^{-8} +11 z^4+6 a z^3+14 z^3 a^{-1} +20 z^3 a^{-3} +17 z^3 a^{-5} +5 z^3 a^{-7} +a^2 z^2-12 z^2 a^{-2} -8 z^2 a^{-4} -z^2 a^{-6} -4 z^2-a z-3 z a^{-1} -3 z a^{-3} -z a^{-5} +1 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-2 q^6+3 q^4-2 q^2-1+5 q^{-2} -4 q^{-4} +6 q^{-6} -2 q^{-8} + q^{-12} -5 q^{-14} +4 q^{-16} -2 q^{-18} +2 q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+22 q^{38}-25 q^{36}+14 q^{34}+18 q^{32}-65 q^{30}+127 q^{28}-176 q^{26}+178 q^{24}-110 q^{22}-51 q^{20}+277 q^{18}-495 q^{16}+619 q^{14}-551 q^{12}+254 q^{10}+221 q^8-733 q^6+1094 q^4-1121 q^2+759-102 q^{-2} -637 q^{-4} +1158 q^{-6} -1252 q^{-8} +878 q^{-10} -176 q^{-12} -542 q^{-14} +971 q^{-16} -920 q^{-18} +406 q^{-20} +341 q^{-22} -974 q^{-24} +1199 q^{-26} -873 q^{-28} +94 q^{-30} +840 q^{-32} -1553 q^{-34} +1765 q^{-36} -1353 q^{-38} +450 q^{-40} +627 q^{-42} -1496 q^{-44} +1839 q^{-46} -1553 q^{-48} +761 q^{-50} +212 q^{-52} -989 q^{-54} +1279 q^{-56} -1014 q^{-58} +349 q^{-60} +402 q^{-62} -898 q^{-64} +913 q^{-66} -467 q^{-68} -244 q^{-70} +900 q^{-72} -1206 q^{-74} +1053 q^{-76} -495 q^{-78} -230 q^{-80} +847 q^{-82} -1157 q^{-84} +1079 q^{-86} -685 q^{-88} +156 q^{-90} +320 q^{-92} -610 q^{-94} +664 q^{-96} -522 q^{-98} +289 q^{-100} -49 q^{-102} -126 q^{-104} +202 q^{-106} -205 q^{-108} +147 q^{-110} -76 q^{-112} +22 q^{-114} +16 q^{-116} -28 q^{-118} +27 q^{-120} -20 q^{-122} +10 q^{-124} -4 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a71"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-18 t^2+34 t-41+34 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6-2 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 159, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+5 q^7-11 q^6+17 q^5-23 q^4+26 q^3-25 q^2+22 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +3 z^4-7 z^2 a^{-2} +5 z^2 a^{-4} -z^2 a^{-6} +3 z^2+1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +14 z^9 a^{-3} +8 z^9 a^{-5} +17 z^8 a^{-2} +23 z^8 a^{-4} +13 z^8 a^{-6} +7 z^8+4 a z^7-3 z^7 a^{-1} -13 z^7 a^{-3} +5 z^7 a^{-5} +11 z^7 a^{-7} +a^2 z^6-47 z^6 a^{-2} -53 z^6 a^{-4} -17 z^6 a^{-6} +5 z^6 a^{-8} -15 z^6-9 a z^5-14 z^5 a^{-1} -18 z^5 a^{-3} -29 z^5 a^{-5} -15 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+39 z^4 a^{-2} +35 z^4 a^{-4} +5 z^4 a^{-6} -4 z^4 a^{-8} +11 z^4+6 a z^3+14 z^3 a^{-1} +20 z^3 a^{-3} +17 z^3 a^{-5} +5 z^3 a^{-7} +a^2 z^2-12 z^2 a^{-2} -8 z^2 a^{-4} -z^2 a^{-6} -4 z^2-a z-3 z a^{-1} -3 z a^{-3} -z a^{-5} +1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a248,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a248,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a71"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-18 t^2+34 t-41+34 t^{-1} -18 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+5 q^7-11 q^6+17 q^5-23 q^4+26 q^3-25 q^2+22 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a248,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a248,} |
Vassiliev invariants
| V2 and V3: | (0, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a71. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



