K11a34: Difference between revisions
No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit!  | 
  <!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit!  | 
||
| Line 10: | Line 10: | ||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately.  | 
  <!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately.  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. -->  | 
||
<!--  -->  | 
  <!-- <math>\text{Null}</math> -->  | 
||
{{Hoste-Thistlethwaite Knot Page|  | 
  {{Hoste-Thistlethwaite Knot Page|  | 
||
n = 11 |  | 
  n = 11 |  | 
||
t =   | 
  t = a |  | 
||
k = 34 |  | 
  k = 34 |  | 
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-8,4,-2,5,-11,6,-10,7,-3,8,-5,9,-6,10,-7,11,-9/goTop.html |  | 
  KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-8,4,-2,5,-11,6,-10,7,-3,8,-5,9,-6,10,-7,11,-9/goTop.html |  | 
||
braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">  | 
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
</table> |  | 
|||
same_alexander  = [[K11a158]],  |  | 
  same_alexander  = [[K11a158]],  |  | 
||
same_jones      = [[K11a89]],  |  | 
  same_jones      = [[K11a89]],  |  | 
||
| Line 40: | Line 46: | ||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
  <tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
||
</table> |  | 
  </table> |  | 
||
coloured_jones_2 =  |  | 
  coloured_jones_2 = <math>\textrm{NotAvailable}(q)</math> |  | 
||
coloured_jones_3 =  |  | 
  coloured_jones_3 = <math>\textrm{NotAvailable}(q)</math> |  | 
||
coloured_jones_4 =  |  | 
  coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> |  | 
||
coloured_jones_5 =  |  | 
  coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |  | 
||
coloured_jones_6 =  |  | 
  coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |  | 
||
coloured_jones_7 =  |  | 
  coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |  | 
||
computer_talk =   | 
  computer_talk =   | 
||
         <table>  | 
           <table>  | 
||
| Line 52: | Line 58: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2  | 
           <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>   | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 34]]</nowiki></pre></td></tr>  | 
|||
         </table>   | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 34]]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7],   | 
||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>11</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[11, Alternating, 34]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7],   | 
  |||
  X[16, 9, 17, 10], X[18, 12, 19, 11], X[20, 14, 21, 13],   | 
    X[16, 9, 17, 10], X[18, 12, 19, 11], X[20, 14, 21, 13],   | 
||
| Line 72: | Line 68: | ||
  X[6, 15, 7, 16], X[22, 17, 1, 18], X[12, 20, 13, 19],   | 
    X[6, 15, 7, 16], X[22, 17, 1, 18], X[12, 20, 13, 19],   | 
||
  X[10, 22, 11, 21]]</nowiki></  | 
    X[10, 22, 11, 21]]</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 34]]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9,   | 
|||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[11, Alternating, 34]]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9,   | 
  |||
  -6, 10, -7, 11, -9]</nowiki></  | 
    -6, 10, -7, 11, -9]</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 34]]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, -2, 3, -2, 1, 3, 3, 3, -2, -2}]</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
         <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 34]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:K11a34_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[6]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
  |||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 34]][t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -4   5    14   25              2      3    4  | 
|||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[Knot[11, Alternating, 34]]</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 34]]]</nowiki></code></td></tr>  | 
  |||
<tr align=left><td></td><td>[[Image:K11a34_ML.gif]]</td></tr><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[11, Alternating, 34]][t]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       -4   5    14   25              2      3    4  | 
  |||
-29 - t   + -- - -- + -- + 25 t - 14 t  + 5 t  - t  | 
  -29 - t   + -- - -- + -- + 25 t - 14 t  + 5 t  - t  | 
||
             3    2   t  | 
               3    2   t  | 
||
            t    t</nowiki></  | 
              t    t</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 34]][z]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4      6    8  | 
|||
         <table><tr align=left>  | 
  |||
1 - 2 z  - 4 z  - 3 z  - z</nowiki></pre></td></tr>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
  |||
<td><  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 34], Knot[11, Alternating, 158]}</nowiki></pre></td></tr>  | 
|||
<tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 34]], KnotSignature[Knot[11, Alternating, 34]]}</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{119, 2}</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 34]][q]</nowiki></pre></td></tr>  | 
|||
1 - 2 z  - 4 z  - 3 z  - z</nowiki></code></td></tr>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       -3   3    7              2       3       4       5      6  | 
|||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, Alternating, 34], Knot[11, Alternating, 158]}</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[11, Alternating, 34]], KnotSignature[Knot[11, Alternating, 34]]}</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{119, 2}</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>J=Jones[Knot[11, Alternating, 34]][q]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       -3   3    7              2       3       4       5      6  | 
  |||
-11 + q   - -- + - + 16 q - 19 q  + 19 q  - 17 q  + 13 q  - 8 q  +   | 
  -11 + q   - -- + - + 16 q - 19 q  + 19 q  - 17 q  + 13 q  - 8 q  +   | 
||
             2   q  | 
               2   q  | 
||
| Line 140: | Line 95: | ||
     7    8  | 
       7    8  | 
||
  4 q  - q</nowiki></  | 
    4 q  - q</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 34], Knot[11, Alternating, 89]}</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[11, Alternating, 34], Knot[11, Alternating, 89]}</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 34]][q]</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8    -6   3       2      4      6      8      12      14      16  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[11, Alternating, 34]][q]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8    -6   3       2      4      6      8      12      14      16  | 
  |||
q   - q   + -- + 3 q  - 5 q  + 2 q  - 3 q  + 2 q   - 2 q   + 4 q   -   | 
  q   - q   + -- + 3 q  - 5 q  + 2 q  - 3 q  + 2 q   - 2 q   + 4 q   -   | 
||
             4  | 
               4  | 
||
| Line 161: | Line 106: | ||
   18    22    24  | 
     18    22    24  | 
||
  q   + q   - q</nowiki></  | 
    q   + q   - q</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 34]][a, z]</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                                             2    2  | 
|||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[11, Alternating, 34]][a, z]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>                                                             2    2  | 
  |||
     -6   5    7    2 z   7 z   7 z   3 z             2   2 z    z  | 
       -6   5    7    2 z   7 z   7 z   3 z             2   2 z    z  | 
||
4 + a   + -- + -- - --- - --- - --- - --- - a z - 11 z  + ---- + -- -   | 
  4 + a   + -- + -- - --- - --- - --- - --- - a z - 11 z  + ---- + -- -   | 
||
| Line 202: | Line 142: | ||
  ---- + ---- + ---- + --- + ---  | 
    ---- + ---- + ---- + --- + ---  | 
||
    5      3     a      4     2  | 
      5      3     a      4     2  | 
||
   a      a            a     a</nowiki></  | 
     a      a            a     a</nowiki></pre></td></tr>  | 
||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 34]], Vassiliev[3][Knot[11, Alternating, 34]]}</nowiki></pre></td></tr>  | 
|||
</table>  | 
  |||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, -1}</nowiki></pre></td></tr>  | 
|||
         <table><tr align=left>  | 
  |||
<  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 34]][q, t]</nowiki></pre></td></tr>  | 
||
<td><  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>          3     1       2       1       5      2      6    5 q  | 
||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-2, -1}</nowiki></code></td></tr>  | 
  |||
</table>  | 
  |||
         <table><tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[11, Alternating, 34]][q, t]</nowiki></code></td></tr>  | 
  |||
<tr align=left>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>  | 
  |||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>          3     1       2       1       5      2      6    5 q  | 
  |||
10 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- +   | 
  10 q + 7 q  + ----- + ----- + ----- + ----- + ---- + --- + --- +   | 
||
               7  4    5  3    3  3    3  2      2   q t    t  | 
                 7  4    5  3    3  3    3  2      2   q t    t  | 
||
| Line 225: | Line 155: | ||
     11  4      11  5      13  5    13  6      15  6    17  7  | 
       11  4      11  5      13  5    13  6      15  6    17  7  | 
||
  8 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t</nowiki></  | 
    8 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t</nowiki></pre></td></tr>  | 
||
</table> }}  | 
           </table> }}  | 
||
Latest revision as of 01:48, 3 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. | 
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,5,15,6 X2837 X16,9,17,10 X18,12,19,11 X20,14,21,13 X6,15,7,16 X22,17,1,18 X12,20,13,19 X10,22,11,21 | 
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -5, 9, -6, 10, -7, 11, -9 | 
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 20 6 22 12 10 | 
| A Braid Representative | |||||
| A Morse Link Presentation |  
 | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["K11a34"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 119, 2 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a158,}
Same Jones Polynomial (up to mirroring, ): {K11a89,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["K11a34"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{K11a158,} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{K11a89,} | 
Vassiliev invariants
| V2 and V3: | (-2, -1) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a34. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
 See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top.  | 
  | 



