K11a158
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X18,5,19,6 X14,7,15,8 X2,10,3,9 X16,11,17,12 X20,14,21,13 X8,15,9,16 X22,17,1,18 X6,19,7,20 X12,22,13,21 |
| Gauss code | 1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -4, 8, -6, 9, -3, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 18 14 2 16 20 8 22 6 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-4 z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 119, -2 } |
| Jones polynomial | [math]\displaystyle{ -q^4+4 q^3-8 q^2+13 q-16+19 q^{-1} -19 q^{-2} +16 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +8 z^4+6 a^4 z^2-17 a^2 z^2-2 z^2 a^{-2} +11 z^2+3 a^4-7 a^2- a^{-2} +6 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+7 a^3 z^9+12 a z^9+5 z^9 a^{-1} +10 a^4 z^8+14 a^2 z^8+4 z^8 a^{-2} +8 z^8+9 a^5 z^7-7 a^3 z^7-30 a z^7-13 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-19 a^4 z^6-57 a^2 z^6-14 z^6 a^{-2} -46 z^6+3 a^7 z^5-14 a^5 z^5-12 a^3 z^5+10 a z^5+2 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+17 a^4 z^4+65 a^2 z^4+15 z^4 a^{-2} +56 z^4-2 a^7 z^3+12 a^5 z^3+18 a^3 z^3+10 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} -a^8 z^2+3 a^6 z^2-9 a^4 z^2-34 a^2 z^2-6 z^2 a^{-2} -27 z^2-4 a^5 z-7 a^3 z-5 a z-3 z a^{-1} -z a^{-3} +3 a^4+7 a^2+ a^{-2} +6 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{20}-q^{18}+3 q^{16}-q^{14}-q^{12}+2 q^{10}-5 q^8+2 q^6-3 q^4+q^2+3- q^{-2} +4 q^{-4} - q^{-6} + q^{-10} - q^{-12} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+9 q^{100}-19 q^{98}+29 q^{96}-36 q^{94}+31 q^{92}-18 q^{90}-6 q^{88}+41 q^{86}-71 q^{84}+95 q^{82}-101 q^{80}+80 q^{78}-38 q^{76}-28 q^{74}+110 q^{72}-184 q^{70}+232 q^{68}-221 q^{66}+138 q^{64}+15 q^{62}-189 q^{60}+341 q^{58}-389 q^{56}+299 q^{54}-92 q^{52}-167 q^{50}+361 q^{48}-401 q^{46}+268 q^{44}-5 q^{42}-260 q^{40}+396 q^{38}-338 q^{36}+88 q^{34}+233 q^{32}-489 q^{30}+543 q^{28}-376 q^{26}+39 q^{24}+334 q^{22}-601 q^{20}+659 q^{18}-500 q^{16}+167 q^{14}+201 q^{12}-487 q^{10}+590 q^8-473 q^6+202 q^4+126 q^2-368+438 q^{-2} -298 q^{-4} +21 q^{-6} +276 q^{-8} -444 q^{-10} +409 q^{-12} -173 q^{-14} -149 q^{-16} +430 q^{-18} -533 q^{-20} +435 q^{-22} -184 q^{-24} -118 q^{-26} +340 q^{-28} -418 q^{-30} +346 q^{-32} -175 q^{-34} -7 q^{-36} +131 q^{-38} -178 q^{-40} +153 q^{-42} -91 q^{-44} +30 q^{-46} +14 q^{-48} -32 q^{-50} +28 q^{-52} -19 q^{-54} +9 q^{-56} -3 q^{-58} + q^{-60} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a158"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-4 z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 119, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+4 q^3-8 q^2+13 q-16+19 q^{-1} -19 q^{-2} +16 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +8 z^4+6 a^4 z^2-17 a^2 z^2-2 z^2 a^{-2} +11 z^2+3 a^4-7 a^2- a^{-2} +6 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+7 a^3 z^9+12 a z^9+5 z^9 a^{-1} +10 a^4 z^8+14 a^2 z^8+4 z^8 a^{-2} +8 z^8+9 a^5 z^7-7 a^3 z^7-30 a z^7-13 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-19 a^4 z^6-57 a^2 z^6-14 z^6 a^{-2} -46 z^6+3 a^7 z^5-14 a^5 z^5-12 a^3 z^5+10 a z^5+2 z^5 a^{-1} -3 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+17 a^4 z^4+65 a^2 z^4+15 z^4 a^{-2} +56 z^4-2 a^7 z^3+12 a^5 z^3+18 a^3 z^3+10 a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} -a^8 z^2+3 a^6 z^2-9 a^4 z^2-34 a^2 z^2-6 z^2 a^{-2} -27 z^2-4 a^5 z-7 a^3 z-5 a z-3 z a^{-1} -z a^{-3} +3 a^4+7 a^2+ a^{-2} +6 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a34,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a158"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-14 t^2+25 t-29+25 t^{-1} -14 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^4+4 q^3-8 q^2+13 q-16+19 q^{-1} -19 q^{-2} +16 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a34,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a158. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



