K11a157
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X18,5,19,6 X12,8,13,7 X16,10,17,9 X2,11,3,12 X20,13,21,14 X8,16,9,15 X22,17,1,18 X6,19,7,20 X14,21,15,22 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -8, 5, -2, 6, -4, 7, -11, 8, -5, 9, -3, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 18 12 16 2 20 8 22 6 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-16 t^2+28 t-33+28 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \left\{2,t^4+t^2+1\right\} }[/math] |
| Determinant and Signature | { 135, -2 } |
| Jones polynomial | [math]\displaystyle{ q^3-4 q^2+9 q-14+19 q^{-1} -22 q^{-2} +22 q^{-3} -18 q^{-4} +14 q^{-5} -8 q^{-6} +3 q^{-7} - q^{-8} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+8 a^4 z^4-10 a^2 z^4+3 z^4-3 a^6 z^2+12 a^4 z^2-10 a^2 z^2+3 z^2-3 a^6+7 a^4-5 a^2+2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^4 z^{10}+2 a^2 z^{10}+6 a^5 z^9+12 a^3 z^9+6 a z^9+8 a^6 z^8+13 a^4 z^8+12 a^2 z^8+7 z^8+6 a^7 z^7-3 a^5 z^7-20 a^3 z^7-7 a z^7+4 z^7 a^{-1} +3 a^8 z^6-14 a^6 z^6-39 a^4 z^6-39 a^2 z^6+z^6 a^{-2} -16 z^6+a^9 z^5-9 a^7 z^5-8 a^5 z^5+4 a^3 z^5-7 a z^5-9 z^5 a^{-1} -4 a^8 z^4+16 a^6 z^4+46 a^4 z^4+38 a^2 z^4-2 z^4 a^{-2} +10 z^4-2 a^9 z^3+6 a^7 z^3+13 a^5 z^3+8 a^3 z^3+8 a z^3+5 z^3 a^{-1} +a^8 z^2-12 a^6 z^2-28 a^4 z^2-20 a^2 z^2+z^2 a^{-2} -4 z^2+a^9 z-2 a^7 z-5 a^5 z-3 a^3 z-2 a z-z a^{-1} +3 a^6+7 a^4+5 a^2+2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{24}-q^{20}-3 q^{18}+4 q^{16}-q^{14}+4 q^{12}+3 q^{10}-3 q^8+3 q^6-6 q^4+3 q^2- q^{-2} +3 q^{-4} -2 q^{-6} + q^{-8} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+10 q^{120}-10 q^{118}+4 q^{116}+10 q^{114}-30 q^{112}+53 q^{110}-73 q^{108}+74 q^{106}-53 q^{104}+89 q^{100}-184 q^{98}+263 q^{96}-285 q^{94}+205 q^{92}-43 q^{90}-200 q^{88}+444 q^{86}-594 q^{84}+578 q^{82}-353 q^{80}-33 q^{78}+442 q^{76}-718 q^{74}+741 q^{72}-503 q^{70}+62 q^{68}+382 q^{66}-634 q^{64}+590 q^{62}-242 q^{60}-225 q^{58}+619 q^{56}-714 q^{54}+457 q^{52}+41 q^{50}-598 q^{48}+990 q^{46}-1019 q^{44}+687 q^{42}-80 q^{40}-565 q^{38}+1029 q^{36}-1139 q^{34}+855 q^{32}-321 q^{30}-291 q^{28}+734 q^{26}-857 q^{24}+643 q^{22}-176 q^{20}-321 q^{18}+622 q^{16}-611 q^{14}+275 q^{12}+201 q^{10}-617 q^8+783 q^6-619 q^4+209 q^2+290-671 q^{-2} +802 q^{-4} -649 q^{-6} +303 q^{-8} +78 q^{-10} -371 q^{-12} +490 q^{-14} -435 q^{-16} +279 q^{-18} -80 q^{-20} -74 q^{-22} +152 q^{-24} -163 q^{-26} +122 q^{-28} -66 q^{-30} +20 q^{-32} +12 q^{-34} -24 q^{-36} +22 q^{-38} -16 q^{-40} +8 q^{-42} -3 q^{-44} + q^{-46} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a157"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-16 t^2+28 t-33+28 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \left\{2,t^4+t^2+1\right\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 135, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^3-4 q^2+9 q-14+19 q^{-1} -22 q^{-2} +22 q^{-3} -18 q^{-4} +14 q^{-5} -8 q^{-6} +3 q^{-7} - q^{-8} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+8 a^4 z^4-10 a^2 z^4+3 z^4-3 a^6 z^2+12 a^4 z^2-10 a^2 z^2+3 z^2-3 a^6+7 a^4-5 a^2+2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^4 z^{10}+2 a^2 z^{10}+6 a^5 z^9+12 a^3 z^9+6 a z^9+8 a^6 z^8+13 a^4 z^8+12 a^2 z^8+7 z^8+6 a^7 z^7-3 a^5 z^7-20 a^3 z^7-7 a z^7+4 z^7 a^{-1} +3 a^8 z^6-14 a^6 z^6-39 a^4 z^6-39 a^2 z^6+z^6 a^{-2} -16 z^6+a^9 z^5-9 a^7 z^5-8 a^5 z^5+4 a^3 z^5-7 a z^5-9 z^5 a^{-1} -4 a^8 z^4+16 a^6 z^4+46 a^4 z^4+38 a^2 z^4-2 z^4 a^{-2} +10 z^4-2 a^9 z^3+6 a^7 z^3+13 a^5 z^3+8 a^3 z^3+8 a z^3+5 z^3 a^{-1} +a^8 z^2-12 a^6 z^2-28 a^4 z^2-20 a^2 z^2+z^2 a^{-2} -4 z^2+a^9 z-2 a^7 z-5 a^5 z-3 a^3 z-2 a z-z a^{-1} +3 a^6+7 a^4+5 a^2+2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a264, K11a305,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a157"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-16 t^2+28 t-33+28 t^{-1} -16 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^3-4 q^2+9 q-14+19 q^{-1} -22 q^{-2} +22 q^{-3} -18 q^{-4} +14 q^{-5} -8 q^{-6} +3 q^{-7} - q^{-8} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a264, K11a305,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, -5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a157. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



