L9a2: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				No edit summary  | 
				DrorsRobot (talk | contribs)  No edit summary  | 
				||
| (4 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!--  -->  | 
  |||
<!-- This  | 
  <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
|||
<!--  -->  | 
  |||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->  | 
|||
<!-- -->  | 
  |||
<!-- <math>\text{Null}</math> -->  | 
|||
<!-- provide an anchor so we can return to the top of the page -->  | 
  |||
<!-- <math>\text{Null}</math> -->  | 
|||
<span id="top"></span>  | 
  |||
<!--                       WARNING! WARNING! WARNING!  | 
|||
<!-- -->  | 
  |||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!  | 
|||
<!-- this relies on transclusion for next and previous links -->  | 
  |||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.  | 
|||
{{Knot Navigation Links|ext=gif}}  | 
  |||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.  | 
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->  | 
|||
| ⚫ | |||
<!-- <math>\text{Null}</math> -->  | 
|||
{{Link Page|  | 
|||
<br style="clear:both" />  | 
  |||
n = 9 |  | 
|||
t = a |  | 
|||
{{:{{PAGENAME}} Further Notes and Views}}  | 
  |||
k = 2 |  | 
|||
| ⚫ | |||
{{Link Presentations}}  | 
  |||
braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">  | 
|||
{{Link Polynomial Invariants}}  | 
  |||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>  | 
|||
{{Vassiliev Invariants}}  | 
  |||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>  | 
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>  | 
|||
{{Khovanov Homology|table=<table border=1>  | 
  |||
| ⚫ | |||
khovanov_table  = <table border=1>  | 
|||
<tr align=center>  | 
  <tr align=center>  | 
||
<td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
  <td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
||
  <tr><td>\</td><td> </td><td>r</td></tr>  | 
|||
<tr><td> </td><td> \ </td><td> </td></tr>  | 
  <tr><td> </td><td> \ </td><td> </td></tr>  | 
||
<tr><td>j</td><td> </td><td>\</td></tr>  | 
  <tr><td>j</td><td> </td><td>\</td></tr>  | 
||
</table></td>  | 
  </table></td>  | 
||
  <td width=7.14286%>-3</td    ><td width=7.14286%>-2</td    ><td width=7.14286%>-1</td    ><td width=7.14286%>0</td    ><td width=7.14286%>1</td    ><td width=7.14286%>2</td    ><td width=7.14286%>3</td    ><td width=7.14286%>4</td    ><td width=7.14286%>5</td    ><td width=7.14286%>6</td    ><td width=14.2857%>χ</td></tr>  | 
|||
<tr align=center><td>16</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr>  | 
  <tr align=center><td>16</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr>  | 
||
<tr align=center><td>14</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr>  | 
  <tr align=center><td>14</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr>  | 
||
| Line 38: | Line 40: | ||
<tr align=center><td>-2</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr>  | 
  <tr align=center><td>-2</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr>  | 
||
<tr align=center><td>-4</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
  <tr align=center><td>-4</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
||
</table>  | 
  </table> |  | 
||
computer_talk =  | 
|||
         <table>  | 
|||
{{Computer Talk Header}}  | 
  |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
         </tr>  | 
|||
| ⚫ | |||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
</tr>  | 
  |||
<tr valign=top><td  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[9, Alternating, 2]]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[9, Alternating, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[14, 7, 15, 8], X[4, 15, 1, 16], X[12, 6, 13, 5],   | 
||
  X[8, 4, 9, 3], X[16, 10, 17, 9], X[18, 12, 5, 11], X[10, 18, 11, 17],   | 
    X[8, 4, 9, 3], X[16, 10, 17, 9], X[18, 12, 5, 11], X[10, 18, 11, 17],   | 
||
  X[2, 14, 3, 13]]</nowiki></pre></td></tr>  | 
    X[2, 14, 3, 13]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[9, Alternating, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8,   | 
||
   -7}]</nowiki></pre></td></tr>  | 
     -7}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, 2, -1, 2, 2, 2, 2}]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  | 
           <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 2]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L9a2_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr>  | 
||
<tr valign=top><td><pre  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[9, Alternating, 2]]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 2]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(3/2)      3                     3/2      5/2      7/2      9/2  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>  | 
  |||
| ⚫ | |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 3}</nowiki></pre></td></tr>  | 
  |||
| ⚫ | |||
| ⚫ | |||
q       - ------- + 3 Sqrt[q] - 6 q    + 6 q    - 7 q    + 6 q    -   | 
  q       - ------- + 3 Sqrt[q] - 6 q    + 6 q    - 7 q    + 6 q    -   | 
||
          Sqrt[q]  | 
            Sqrt[q]  | 
||
| Line 77: | Line 74: | ||
     11/2      13/2    15/2  | 
       11/2      13/2    15/2  | 
||
  4 q     + 3 q     - q</nowiki></pre></td></tr>  | 
    4 q     + 3 q     - q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 2]][q]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -4    -2      2      4      6      8    10      14      16    20  | 
||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>  | 
  |||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 2]][q]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -4    -2      2      4      6      8    10      14      16    20  | 
  |||
1 - q   + q   + 3 q  + 4 q  + 2 q  + 4 q  - q   - 2 q   - 2 q   - q   +   | 
  1 - q   + q   + 3 q  + 4 q  + 2 q  + 4 q  - q   - 2 q   - 2 q   - q   +   | 
||
   22  | 
     22  | 
||
  q</nowiki></pre></td></tr>  | 
    q</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 2]][a, z]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                 3      3      3    5      5    5    7  | 
||
 1      3      2    z    z    3 z    7 z    3 z    z    5 z    z    z  | 
|||
---- - ---- + --- - -- + -- - ---- + ---- - ---- - -- + ---- - -- + --  | 
|||
 5      3     a z    5    3     5      3     a      5     3    a     3  | 
|||
a  z   a  z         a    a     a      a            a     a          a</nowiki></pre></td></tr>  | 
|||
| ⚫ | |||
| ⚫ | |||
  -6   3    3     1      3      2    2 z   3 z   z    2   2 z    2 z  | 
    -6   3    3     1      3      2    2 z   3 z   z    2   2 z    2 z  | 
||
-a   - -- - -- + ---- + ---- + --- + --- + --- + - - z  + ---- + ---- -   | 
  -a   - -- - -- + ---- + ---- + --- + --- + --- + - - z  + ---- + ---- -   | 
||
| Line 110: | Line 110: | ||
   a       4      2  | 
     a       4      2  | 
||
          a      a</nowiki></pre></td></tr>  | 
            a      a</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[  | 
           <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 2]][q, t]</nowiki></pre></td></tr>  | 
||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[  | 
  <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                           2  | 
||
{0, -(-)}  | 
  |||
      2</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 2]][q, t]</nowiki></pre></td></tr>  | 
  |||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                           2  | 
  |||
   2      4     1      -2     2     1   2 q       4        6  | 
     2      4     1      -2     2     1   2 q       4        6  | 
||
5 q  + 3 q  + ----- + t   + ----- + - + ---- + 3 q  t + 3 q  t +   | 
  5 q  + 3 q  + ----- + t   + ----- + - + ---- + 3 q  t + 3 q  t +   | 
||
| Line 126: | Line 122: | ||
   12  5      14  5    16  6  | 
     12  5      14  5    16  6  | 
||
  q   t  + 2 q   t  + q   t</nowiki></pre></td></tr>  | 
    q   t  + 2 q   t  + q   t</nowiki></pre></td></tr>  | 
||
</table>  | 
           </table> }}  | 
||
 [[Category:Knot Page]]  | 
  |||
Latest revision as of 02:10, 3 September 2005
| 
 | 
 | 
![]() (Knotscape image)  | 
See the full Thistlethwaite Link Table (up to 11 crossings). | 
| 
 L9a2 is in the Rolfsen table of links.  | 
Link Presentations
[edit Notes on L9a2's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X18,12,5,11 X10,18,11,17 X2,14,3,13 | 
| Gauss code | {1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8, -7} | 
| A Braid Representative | ||||
| A Morse Link Presentation |  
 | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | 3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top.  | 
  | 



