L9a1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a1 is [math]\displaystyle{ 9^2_{32} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a1's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X10,6,11,5 X8493 X18,12,5,11 X12,18,13,17 X16,10,17,9 X2,14,3,13 |
| Gauss code | {1, -9, 5, -3}, {4, -1, 2, -5, 8, -4, 6, -7, 9, -2, 3, -8, 7, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{13/2}+3 q^{11/2}-5 q^{9/2}+8 q^{7/2}-10 q^{5/2}+9 q^{3/2}-9 \sqrt{q}+\frac{6}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-1} +z^5 a^{-3} -a z^3+z^3 a^{-1} +2 z^3 a^{-3} -z^3 a^{-5} -z a^{-1} +2 z a^{-3} -z a^{-5} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^8 a^{-2} -2 z^8 a^{-4} -5 z^7 a^{-1} -9 z^7 a^{-3} -4 z^7 a^{-5} -5 z^6 a^{-2} -2 z^6 a^{-4} -3 z^6 a^{-6} -6 z^6-4 a z^5+4 z^5 a^{-1} +18 z^5 a^{-3} +9 z^5 a^{-5} -z^5 a^{-7} -a^2 z^4+11 z^4 a^{-2} +10 z^4 a^{-4} +7 z^4 a^{-6} +7 z^4+4 a z^3-13 z^3 a^{-3} -7 z^3 a^{-5} +2 z^3 a^{-7} -4 z^2 a^{-2} -7 z^2 a^{-4} -4 z^2 a^{-6} -z^2+2 z a^{-1} +4 z a^{-3} +2 z a^{-5} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



