L9a2
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a2 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a2's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X18,12,5,11 X10,18,11,17 X2,14,3,13 |
| Gauss code | {1, -9, 5, -3}, {4, -1, 2, -5, 6, -8, 7, -4, 9, -2, 3, -6, 8, -7} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1) \left(t(2)^4-t(2)^3+t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{15/2}+3 q^{13/2}-4 q^{11/2}+6 q^{9/2}-7 q^{7/2}+6 q^{5/2}-6 q^{3/2}+3 \sqrt{q}-\frac{3}{\sqrt{q}}+\frac{1}{q^{3/2}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^7 a^{-3} -z^5 a^{-1} +5 z^5 a^{-3} -z^5 a^{-5} -3 z^3 a^{-1} +7 z^3 a^{-3} -3 z^3 a^{-5} +z a^{-3} -z a^{-5} +2 a^{-1} z^{-1} -3 a^{-3} z^{-1} + a^{-5} z^{-1} } (db) |
| Kauffman polynomial | (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



