L7n2: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- --> |
|||
<!-- This |
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- --> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<!-- <math>\text{Null}</math> --> |
|||
<span id="top"></span> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- --> |
|||
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> |
|||
⚫ | |||
<!-- <math>\text{Null}</math> --> |
|||
{{Link Page| |
|||
<br style="clear:both" /> |
|||
n = 7 | |
|||
t = n | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
k = 2 | |
|||
⚫ | |||
{{Link Presentations}} |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
{{Link Polynomial Invariants}} |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{{Vassiliev Invariants}} |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
{{Khovanov Homology|table=<table border=1> |
|||
⚫ | |||
khovanov_table = <table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=20.%><table cellpadding=0 cellspacing=0> |
<td width=20.%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=10.%>-5</td ><td width=10.%>-4</td ><td width=10.%>-3</td ><td width=10.%>-2</td ><td width=10.%>-1</td ><td width=10.%>0</td ><td width=20.%>χ</td></tr> |
|||
<tr align=center><td>0</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
<tr align=center><td>0</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
||
<tr align=center><td>-2</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>1</td></tr> |
<tr align=center><td>-2</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>1</td></tr> |
||
Line 34: | Line 36: | ||
<tr align=center><td>-10</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-10</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-12</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-12</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
computer_talk = |
|||
<table> |
|||
{{Computer Talk Header}} |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
</tr> |
|||
⚫ | |||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
|||
⚫ | |||
⚫ | |||
</tr> |
|||
<tr valign=top><td |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[7, NonAlternating, 2]]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[7, NonAlternating, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[12, 7, 13, 8], X[13, 1, 14, 4], X[5, 10, 6, 11], |
||
X[3, 8, 4, 9], X[9, 14, 10, 5], X[2, 12, 3, 11]]</nowiki></pre></td></tr> |
X[3, 8, 4, 9], X[9, 14, 10, 5], X[2, 12, 3, 11]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[7, NonAlternating, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -7, -5, 3}, {-4, -1, 2, 5, -6, 4, 7, -2, -3, 6}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[7, NonAlternating, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, -2, 1, -2, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[7, NonAlternating, 2]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L7n2_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[7, NonAlternating, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-1</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[7, NonAlternating, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(11/2) -(9/2) -(7/2) 2 -(3/2) 2 |
||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -1}</nowiki></pre></td></tr> |
|||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(11/2) -(9/2) -(7/2) 2 -(3/2) 2 |
|||
q - q + q - ---- + q - ------- |
q - q + q - ---- + q - ------- |
||
5/2 Sqrt[q] |
5/2 Sqrt[q] |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[7, NonAlternating, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -14 -12 -10 2 3 3 2 |
||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[7, NonAlternating, 2]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 -14 -12 -10 2 3 3 2 |
|||
2 - q - q - q - q + q + -- + -- + -- + -- |
2 - q - q - q - q + q + -- + -- + -- + -- |
||
8 6 4 2 |
8 6 4 2 |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[7, NonAlternating, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 |
||
-2 a 3 a a 3 5 3 3 |
|||
---- + ---- - -- - 2 a z + 3 a z - a z + a z |
|||
⚫ | |||
⚫ | |||
⚫ | |||
2 4 6 2 a 3 a a 3 5 |
2 4 6 2 a 3 a a 3 5 |
||
-3 a - 3 a - a + --- + ---- + -- - 3 a z - 5 a z - 2 a z + |
-3 a - 3 a - a + --- + ---- + -- - 3 a z - 5 a z - 2 a z + |
||
Line 86: | Line 85: | ||
6 4 3 5 5 5 |
6 4 3 5 5 5 |
||
a z - a z - a z</nowiki></pre></td></tr> |
a z - a z - a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[7, NonAlternating, 2]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 1 1 1 1 1 1 |
||
{0, -} |
|||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[7, NonAlternating, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 1 1 1 1 1 1 |
|||
2 + -- + ------ + ----- + ----- + ----- + ----- + ---- |
2 + -- + ------ + ----- + ----- + ----- + ----- + ---- |
||
2 12 5 8 4 8 3 6 2 4 2 2 |
2 12 5 8 4 8 3 6 2 4 2 2 |
||
q q t q t q t q t q t q t</nowiki></pre></td></tr> |
q q t q t q t q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> }} |
||
[[Category:Knot Page]] |
Latest revision as of 02:49, 3 September 2005
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
L7n2 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7n2's Link Presentations]
Planar diagram presentation | X6172 X12,7,13,8 X13,1,14,4 X5,10,6,11 X3849 X9,14,10,5 X2,12,3,11 |
Gauss code | {1, -7, -5, 3}, {-4, -1, 2, 5, -6, 4, 7, -2, -3, 6} |
A Braid Representative | ||||
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|