L7n1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L7n1 is [math]\displaystyle{ 7^2_7 }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7n1's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X4,13,1,14 X5,10,6,11 X3849 X9,14,10,5 X11,2,12,3 |
| Gauss code | {1, 7, -5, -3}, {-4, -1, 2, 5, -6, 4, -7, -2, 3, 6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-u v^3-1}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{5/2}}-\frac{1}{q^{9/2}}-\frac{1}{q^{13/2}}+\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^9 z^{-1} +a^7 z^3+4 a^7 z+3 a^7 z^{-1} -a^5 z^5-5 a^5 z^3-6 a^5 z-2 a^5 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10}+a^9 z-a^9 z^{-1} +a^8 z^4-4 a^8 z^2+3 a^8+a^7 z^5-5 a^7 z^3+7 a^7 z-3 a^7 z^{-1} +a^6 z^4-4 a^6 z^2+3 a^6+a^5 z^5-5 a^5 z^3+6 a^5 z-2 a^5 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



