L7n2
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L7n2 is [math]\displaystyle{ 7^2_8 }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7n2's Link Presentations]
| Planar diagram presentation | X6172 X12,7,13,8 X13,1,14,4 X5,10,6,11 X3849 X9,14,10,5 X2,12,3,11 |
| Gauss code | {1, -7, -5, 3}, {-4, -1, 2, 5, -6, 4, 7, -2, -3, 6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{\sqrt{q}}+\frac{1}{q^{3/2}}-\frac{2}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{1}{q^{9/2}}+\frac{1}{q^{11/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 (-z)-a^5 z^{-1} +a^3 z^3+3 a^3 z+3 a^3 z^{-1} -2 a z-2 a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^6 z^4-3 a^6 z^2+a^6+a^5 z^5-3 a^5 z^3+2 a^5 z-a^5 z^{-1} +2 a^4 z^4-5 a^4 z^2+3 a^4+a^3 z^5-3 a^3 z^3+5 a^3 z-3 a^3 z^{-1} +a^2 z^4-2 a^2 z^2+3 a^2+3 a z-2 a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



