L9a32: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- This page was | <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! | ||
| <!--  --> <!-- | |||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | |||
|  --> | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! | |||
| <!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. | |||
| <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| {{Link Page| | {{Link Page| | ||
| n = 9 | | n = 9 | | ||
| Line 7: | Line 16: | ||
| k = 32 | | k = 32 | | ||
| KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,6,-9:7,-1,4,-5,8,-2,3,-4,9,-6,5,-3/goTop.html | | KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,2,-8,6,-9:7,-1,4,-5,8,-2,3,-4,9,-6,5,-3/goTop.html | | ||
| braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> | |||
| <tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| </table> | | |||
| khovanov_table  = <table border=1> | khovanov_table  = <table border=1> | ||
| <tr align=center> | <tr align=center> | ||
| Line 33: | Line 51: | ||
|          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |          <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | ||
|          </tr> |          </tr> | ||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of  |          <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 32]]</nowiki></pre></td></tr> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> | ||
| Line 49: | Line 67: | ||
|   {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3}]</nowiki></pre></td></tr> |   {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3}]</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 32]]</nowiki></pre></td></tr> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[7, {1, -2, -3, -4, -3, -5, 6, -5, 4, -3, 2, -1, -3, -4, -3, 5, 4,  | ||
| ⚫ | |||
|          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 32]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L9a32_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> |          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 32]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L9a32_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[9, Alternating, 32]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-3</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 32]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2)     3       5       7       8       9      7      6      3 | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[9, Alternating, 32]], KnotSignature[Link[9, Alternating, 32]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -3}</nowiki></pre></td></tr> | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 32]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(21/2)     3       5       7       8       9      7      6      3 | |||
| q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- -  | q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- -  | ||
|             19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2 |             19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2 | ||
| Line 67: | Line 81: | ||
|    -(3/2) |    -(3/2) | ||
|   q</nowiki></pre></td></tr> |   q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 32]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>  -34    2     -30    4     -22    2     -18    2     -12    2     -8 | ||
| -q    - --- + q    + --- + q    + --- + q    + --- - q    + --- + q   -  | -q    - --- + q    + --- + q    + --- + q    + --- - q    + --- + q   -  | ||
|          32           24           20           14           10 |          32           24           20           14           10 | ||
| Line 77: | Line 91: | ||
|    6 |    6 | ||
|   q</nowiki></pre></td></tr> |   q</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 32]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    7      9    11 | ||
| -2 a    3 a    a        5        7        9      3  3      5  3 | -2 a    3 a    a        5        7        9      3  3      5  3 | ||
| ----- + ---- - --- - 3 a  z - 4 a  z + 4 a  z - a  z  - 3 a  z  -  | ----- + ---- - --- - 3 a  z - 4 a  z + 4 a  z - a  z  - 3 a  z  -  | ||
| Line 85: | Line 99: | ||
|      7  3 |      7  3 | ||
|   3 a  z</nowiki></pre></td></tr> |   3 a  z</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[9, Alternating, 32]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                        7      9    11 | ||
|    8      10    12   2 a    3 a    a        5        7         9 |    8      10    12   2 a    3 a    a        5        7         9 | ||
| 3 a  + 3 a   + a   - ---- - ---- - --- - 3 a  z + 6 a  z + 11 a  z +  | 3 a  + 3 a   + a   - ---- - ---- - --- - 3 a  z + 6 a  z + 11 a  z +  | ||
| Line 105: | Line 119: | ||
|      11  7      8  8      10  8 |      11  7      8  8      10  8 | ||
|   3 a   z  - 2 a  z  - 2 a   z</nowiki></pre></td></tr> |   3 a   z  - 2 a  z  - 2 a   z</nowiki></pre></td></tr> | ||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 32]][q, t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4    -2     1        2        1        3        2        4 | ||
| {0, -(--)} | |||
| ⚫ | |||
|          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 32]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4    -2     1        2        1        3        2        4 | |||
| q   + q   + ------ + ------ + ------ + ------ + ------ + ------ +  | q   + q   + ------ + ------ + ------ + ------ + ------ + ------ +  | ||
|              22  9    20  8    18  8    18  7    16  7    16  6 |              22  9    20  8    18  8    18  7    16  7    16  6 | ||
Latest revision as of 03:28, 3 September 2005
|  |  | 
|  (Knotscape image) | See the full Thistlethwaite Link Table (up to 11 crossings). | 
| L9a32 is in the Rolfsen table of links. | 
| Logo of the Canadian Undergraduate Mathematics Conference | 
Link Presentations
[edit Notes on L9a32's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X18,13,7,14 X14,9,15,10 X10,17,11,18 X16,5,17,6 X2738 X4,11,5,12 X6,15,1,16 | 
| Gauss code | {1, -7, 2, -8, 6, -9}, {7, -1, 4, -5, 8, -2, 3, -4, 9, -6, 5, -3} | 
| A Braid Representative | 
 | |||||||
| A Morse Link Presentation |   | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -3 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. | 
 | 











