L9a33
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a33 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{24}} in the Rolfsen table of links. |
With an hypotrochoid [1]. | ||||
Link Presentations
[edit Notes on L9a33's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X18,10,7,9 X10,14,11,13 X16,5,17,6 X14,18,15,17 X2738 X4,11,5,12 X6,15,1,16 |
| Gauss code | {1, -7, 2, -8, 5, -9}, {7, -1, 3, -4, 8, -2, 4, -6, 9, -5, 6, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u^2 v^2-3 u^2 v+3 u^2-3 u v^2+7 u v-3 u+3 v^2-3 v+1}{u v}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{6}{q^{9/2}}+\frac{7}{q^{7/2}}+q^{5/2}-\frac{9}{q^{5/2}}-4 q^{3/2}+\frac{10}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}+6 \sqrt{q}-\frac{8}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^{-1} -3 a^5 z-a^5 z^{-1} +3 a^3 z^3+3 a^3 z-a z^5-2 a z^3+z^3 a^{-1} -3 a z} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^8-a^2 z^8-3 a^5 z^7-7 a^3 z^7-4 a z^7-2 a^6 z^6-7 a^4 z^6-11 a^2 z^6-6 z^6-a^7 z^5+5 a^5 z^5+9 a^3 z^5-a z^5-4 z^5 a^{-1} +3 a^6 z^4+18 a^4 z^4+24 a^2 z^4-z^4 a^{-2} +8 z^4+3 a^7 z^3-3 a^5 z^3-2 a^3 z^3+8 a z^3+4 z^3 a^{-1} -11 a^4 z^2-14 a^2 z^2-3 z^2-3 a^7 z+a^5 z+2 a^3 z-2 a z-a^6+a^7 z^{-1} +a^5 z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|










