L9a34
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a34 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{6}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a34's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X14,5,15,6 X12,3,13,4 X16,8,17,7 X18,15,9,16 X4,13,5,14 X6,18,7,17 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -8, 3, -6, 2, -7, 4, -9}, {8, -1, 9, -3, 6, -2, 5, -4, 7, -5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)+t(2)-1) (t(1) t(2)+1) (t(2) t(1)-t(1)-t(2))}{t(1)^{3/2} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{6}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{5}{q^{5/2}}-\frac{4}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{2}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{6}{q^{11/2}}-\sqrt{q}+\frac{2}{\sqrt{q}}} (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^3 a^7-2 z a^7+z^5 a^5+3 z^3 a^5+3 z a^5+a^5 z^{-1} +z^5 a^3+2 z^3 a^3-z a^3-a^3 z^{-1} -z^3 a-2 z a} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{10}+2 z^2 a^{10}-2 z^5 a^9+4 z^3 a^9-2 z a^9-2 z^6 a^8+2 z^4 a^8-2 z^7 a^7+3 z^5 a^7-3 z^3 a^7-z a^7-z^8 a^6-z^2 a^6-4 z^7 a^5+10 z^5 a^5-12 z^3 a^5+6 z a^5-a^5 z^{-1} -z^8 a^4+2 z^4 a^4-z^2 a^4+a^4-2 z^7 a^3+4 z^5 a^3-2 z^3 a^3+3 z a^3-a^3 z^{-1} -2 z^6 a^2+5 z^4 a^2-2 z^2 a^2-z^5 a+3 z^3 a-2 z a} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



