Three Dimensional Invariants: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Manual TOC Sidebar}} |
{{Manual TOC Sidebar}} |
||
{{Startup Note}} |
|||
<!--$$?SymmetryType$$--> |
|||
<!--END--> |
|||
The ''unknotting number' of a knot <math>K</math> is the minimal number of crossing changes needed in order to unknot <math>K</math>. |
|||
<!--$$?UnknottingNumber$$--> |
|||
<!--END--> |
|||
%<* UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] *> |
|||
Of the <*UH /. _u -> 1*> knots whose unknotting number is known to {\tt |
|||
KnotTheory`}, <*Coefficient[UH, u[1]]*> have unknotting number 1, |
|||
<*Coefficient[UH, u[2]]*> have unknotting number 2, <*Coefficient[UH, |
|||
u[3]]*> have unknotting number 3, <*Coefficient[UH, u[4]]*> have |
|||
unknotting number 4 and <*Coefficient[UH, u[5]]*> has unknotting number |
|||
5: |
|||
<*InOut@"Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]"*> |
|||
There are <*Length[ |
|||
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &] |
|||
]*> knots with up to 9 crossings whose unknotting number is unknown: |
|||
<*InOut@"Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === L |
|||
ist &]"*> |
|||
\index{Livingston, Charles} |
|||
<* HelpBox[ThreeGenus] *> |
|||
\index{Bridge index} |
|||
The {\em bridge index} of a knot $K$ is the minimal number of local maxima (or |
|||
local minima) in a generic smooth embedding of $K$ in $\bbR^3$. |
|||
\index{Livingston, Charles} |
|||
<* HelpBox[BridgeIndex] *> |
|||
An often studied class of knots is the class of 2-bridge knots, knots whose |
|||
bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge: |
|||
<*InOut@"Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]"*> |
|||
\index{Super bridge index} |
|||
The {\em super bridge index} of a knot $K$ is the minimal number, in a |
|||
generic smooth embedding of $K$ in $\bbR^3$, of the maximal number of local |
|||
maxima (or local minima) in a rigid rotation of that projection. |
|||
\index{Livingston, Charles} |
|||
<* HelpBox[SuperBridgeIndex] *> |
|||
\index{Livingston, Charles} |
|||
<* HelpBox[NakanishiIndex] *> |
|||
<*InOut@"Profile[K_] := Profile[\n |
|||
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K]\n |
|||
BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]\n |
|||
]"*> |
|||
<*InOut@"Profile[Knot[9,24]]"*> |
|||
<*InOut@"Ks = Select[\n |
|||
AllKnots[],\n |
|||
(Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&\n |
|||
]"*> |
|||
<*InOut@"Alexander[#][t]& /@ Ks"*> |
Revision as of 21:11, 24 August 2005
(For In[1] see Setup)
The unknotting number' of a knot is the minimal number of crossing changes needed in order to unknot .
%<* UH = Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer] *>
Of the <*UH /. _u -> 1*> knots whose unknotting number is known to {\tt KnotTheory`}, <*Coefficient[UH, u[1]]*> have unknotting number 1, <*Coefficient[UH, u[2]]*> have unknotting number 2, <*Coefficient[UH, u[3]]*> have unknotting number 3, <*Coefficient[UH, u[4]]*> have unknotting number 4 and <*Coefficient[UH, u[5]]*> has unknotting number 5:
<*InOut@"Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]"*>
There are <*Length[
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
]*> knots with up to 9 crossings whose unknotting number is unknown:
<*InOut@"Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === L ist &]"*>
\index{Livingston, Charles} <* HelpBox[ThreeGenus] *>
\index{Bridge index} The {\em bridge index} of a knot $K$ is the minimal number of local maxima (or local minima) in a generic smooth embedding of $K$ in $\bbR^3$.
\index{Livingston, Charles} <* HelpBox[BridgeIndex] *>
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
<*InOut@"Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]"*>
\index{Super bridge index} The {\em super bridge index} of a knot $K$ is the minimal number, in a generic smooth embedding of $K$ in $\bbR^3$, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
\index{Livingston, Charles} <* HelpBox[SuperBridgeIndex] *>
\index{Livingston, Charles} <* HelpBox[NakanishiIndex] *>
<*InOut@"Profile[K_] := Profile[\n
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K]\n BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]\n
]"*> <*InOut@"Profile[Knot[9,24]]"*> <*InOut@"Ks = Select[\n
AllKnots[],\n (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&\n
]"*> <*InOut@"Alexander[#][t]& /@ Ks"*>