Three Dimensional Invariants: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 27: Line 27:
Of the <!--$UH /. _u -> 1$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->1<!--END--> has unknotting number 5:
Of the <!--$UH /. _u -> 1$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->512<!--END--> knots whose unknotting number is known to <code>KnotTheory`</code>, <!--$Coefficient[UH, u[1]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->197<!--END--> have unknotting number 1, <!--$Coefficient[UH, u[2]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->247<!--END--> have unknotting number 2, <!--$Coefficient[UH, u[3]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->54<!--END--> have unknotting number 3, <!--$Coefficient[UH, u[4]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->12<!--END--> have unknotting number 4 and <!--$Coefficient[UH, u[5]]$--><!--The content to END was generated by WikiSplice: do not edit; see manual.-->1<!--END--> has unknotting number 5:


<*InOut@"Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]"*>
<!--$$Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]$$-->
<!--END-->


There are <!--$Length[Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
There are <*Length[
]$--><!--END--> knots with up to 9 crossings whose unknotting number is unknown:
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
]*> knots with up to 9 crossings whose unknotting number is unknown:


<*InOut@"Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === L
<!--$$Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]$$-->
<!--END-->
ist &]"*>


<!--$$?ThreeGenus$$-->
\index{Livingston, Charles}
<!--END-->
<* HelpBox[ThreeGenus] *>


The ''bridge index' of a knot <math>K</math> is the minimal number of local maxima (or local minima) in a generic smooth embedding of <math>K</math> in <math>{\mathbf R}^3</math>.
\index{Bridge index}
The {\em bridge index} of a knot $K$ is the minimal number of local maxima (or
local minima) in a generic smooth embedding of $K$ in $\bbR^3$.


<!--$$?BridgeIndex$$-->
\index{Livingston, Charles}
<!--END-->
<* HelpBox[BridgeIndex] *>


An often studied class of knots is the class of 2-bridge knots, knots whose
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:


<*InOut@"Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]"*>
<!--$$Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]$$-->
<!--END-->


The ''super bridge index'' of a knot <math>K</math> is the minimal number, in a generic smooth embedding of <math>K</math> in <math>{\mathbf R}^3</math>, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
\index{Super bridge index}
The {\em super bridge index} of a knot $K$ is the minimal number, in a
generic smooth embedding of $K$ in $\bbR^3$, of the maximal number of local
maxima (or local minima) in a rigid rotation of that projection.


<!--$$?SuperBridgeIndex$$-->
\index{Livingston, Charles}
<!--END-->
<* HelpBox[SuperBridgeIndex] *>


<!--$$?NakanishiIndex$$-->
\index{Livingston, Charles}
<!--END-->
<* HelpBox[NakanishiIndex] *>


<!--$$Profile[K_] := Profile[SymmetryType[K], UnknottingNumber[K], ThreeGenus[K], BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]]$$-->
<*InOut@"Profile[K_] := Profile[\n
<!--END-->
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K]\n

BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]\n
<!--$$Profile[Knot[9,24]]$$-->
]"*>
<!--END-->
<*InOut@"Profile[Knot[9,24]]"*>

<*InOut@"Ks = Select[\n
<!--$$Ks = Select[AllKnots[], (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&]$$-->
AllKnots[],\n
<!--END-->
(Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&\n

]"*>
<*InOut@"Alexander[#][t]& /@ Ks"*>
<!--$$Alexander[#][t]& /@ Ks$$-->
<!--END-->

Revision as of 22:55, 24 August 2005


(For In[1] see Setup)

In[2]:= ?SymmetryType

SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral.

In[3]:= SymmetryType::about

The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.

The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .

In[4]:= ?UnknottingNumber

UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned.

In[5]:= UnknottingNumber::about

The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/.


Of the 512 knots whose unknotting number is known to KnotTheory`, 197 have unknotting number 1, 247 have unknotting number 2, 54 have unknotting number 3, 12 have unknotting number 4 and 1 has unknotting number 5:


There are knots with up to 9 crossings whose unknotting number is unknown:


The bridge index' of a knot is the minimal number of local maxima (or local minima) in a generic smooth embedding of in .


An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:


The super bridge index of a knot is the minimal number, in a generic smooth embedding of in , of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.