10 148: Difference between revisions
(Resetting knot page to basic template.) Β |
m (Reverted edits by CnaacElget (Talk); changed back to last version by ScottTestRobot) Β |
||
(10 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_148}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 148 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,9,10,-2,-5,6,-9,3,-4,8,-7,5,-6,4,-8,7/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>-2+3 q^{-1} +4 q^{-2} -12 q^{-3} +6 q^{-4} +15 q^{-5} -24 q^{-6} +5 q^{-7} +26 q^{-8} -30 q^{-9} + q^{-10} +29 q^{-11} -26 q^{-12} -5 q^{-13} +26 q^{-14} -16 q^{-15} -9 q^{-16} +17 q^{-17} -5 q^{-18} -7 q^{-19} +6 q^{-20} -2 q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>q^4-q^3-q^2-3 q+3+8 q^{-1} -14 q^{-3} -12 q^{-4} +25 q^{-5} +25 q^{-6} -26 q^{-7} -48 q^{-8} +28 q^{-9} +67 q^{-10} -18 q^{-11} -90 q^{-12} +16 q^{-13} +97 q^{-14} + q^{-15} -111 q^{-16} -4 q^{-17} +105 q^{-18} +19 q^{-19} -107 q^{-20} -23 q^{-21} +93 q^{-22} +36 q^{-23} -82 q^{-24} -44 q^{-25} +64 q^{-26} +51 q^{-27} -45 q^{-28} -53 q^{-29} +26 q^{-30} +47 q^{-31} -6 q^{-32} -41 q^{-33} -2 q^{-34} +25 q^{-35} +10 q^{-36} -15 q^{-37} -8 q^{-38} +6 q^{-39} +6 q^{-40} -3 q^{-41} -2 q^{-42} +2 q^{-44} - q^{-45} </math> | |
|||
coloured_jones_4 = <math>-q^8+q^7+3 q^6-2 q^4-9 q^3-6 q^2+14 q+16+14 q^{-1} -23 q^{-2} -53 q^{-3} - q^{-4} +36 q^{-5} +90 q^{-6} +19 q^{-7} -125 q^{-8} -92 q^{-9} -12 q^{-10} +197 q^{-11} +159 q^{-12} -137 q^{-13} -214 q^{-14} -161 q^{-15} +249 q^{-16} +333 q^{-17} -67 q^{-18} -283 q^{-19} -329 q^{-20} +227 q^{-21} +445 q^{-22} +22 q^{-23} -277 q^{-24} -437 q^{-25} +172 q^{-26} +476 q^{-27} +85 q^{-28} -232 q^{-29} -473 q^{-30} +111 q^{-31} +445 q^{-32} +130 q^{-33} -156 q^{-34} -463 q^{-35} +31 q^{-36} +363 q^{-37} +173 q^{-38} -43 q^{-39} -406 q^{-40} -68 q^{-41} +224 q^{-42} +189 q^{-43} +89 q^{-44} -285 q^{-45} -135 q^{-46} +61 q^{-47} +134 q^{-48} +167 q^{-49} -123 q^{-50} -113 q^{-51} -50 q^{-52} +34 q^{-53} +141 q^{-54} -11 q^{-55} -36 q^{-56} -57 q^{-57} -27 q^{-58} +62 q^{-59} +12 q^{-60} +9 q^{-61} -20 q^{-62} -24 q^{-63} +16 q^{-64} + q^{-65} +8 q^{-66} -2 q^{-67} -8 q^{-68} +4 q^{-69} - q^{-70} +2 q^{-71} -2 q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>-2 q^{11}+5 q^9+5 q^8-4 q^6-21 q^5-18 q^4+11 q^3+39 q^2+47 q+20-51 q^{-1} -114 q^{-2} -84 q^{-3} +32 q^{-4} +174 q^{-5} +205 q^{-6} +65 q^{-7} -199 q^{-8} -381 q^{-9} -245 q^{-10} +162 q^{-11} +526 q^{-12} +518 q^{-13} +15 q^{-14} -649 q^{-15} -840 q^{-16} -265 q^{-17} +645 q^{-18} +1145 q^{-19} +637 q^{-20} -568 q^{-21} -1394 q^{-22} -1000 q^{-23} +373 q^{-24} +1555 q^{-25} +1363 q^{-26} -164 q^{-27} -1622 q^{-28} -1615 q^{-29} -100 q^{-30} +1622 q^{-31} +1836 q^{-32} +267 q^{-33} -1562 q^{-34} -1915 q^{-35} -467 q^{-36} +1485 q^{-37} +2002 q^{-38} +548 q^{-39} -1396 q^{-40} -1971 q^{-41} -673 q^{-42} +1293 q^{-43} +1982 q^{-44} +721 q^{-45} -1179 q^{-46} -1904 q^{-47} -825 q^{-48} +1023 q^{-49} +1852 q^{-50} +899 q^{-51} -833 q^{-52} -1718 q^{-53} -1008 q^{-54} +586 q^{-55} +1564 q^{-56} +1081 q^{-57} -302 q^{-58} -1325 q^{-59} -1127 q^{-60} + q^{-61} +1031 q^{-62} +1103 q^{-63} +264 q^{-64} -685 q^{-65} -979 q^{-66} -476 q^{-67} +338 q^{-68} +784 q^{-69} +566 q^{-70} -44 q^{-71} -509 q^{-72} -551 q^{-73} -182 q^{-74} +266 q^{-75} +436 q^{-76} +263 q^{-77} -42 q^{-78} -270 q^{-79} -277 q^{-80} -73 q^{-81} +126 q^{-82} +191 q^{-83} +124 q^{-84} -18 q^{-85} -112 q^{-86} -103 q^{-87} -31 q^{-88} +40 q^{-89} +70 q^{-90} +36 q^{-91} -9 q^{-92} -26 q^{-93} -29 q^{-94} -8 q^{-95} +15 q^{-96} +14 q^{-97} + q^{-99} -4 q^{-100} -7 q^{-101} +3 q^{-102} +4 q^{-103} -2 q^{-104} + q^{-106} -2 q^{-107} +2 q^{-109} - q^{-110} </math> | |
|||
coloured_jones_6 = <math>q^{20}-q^{19}-q^{18}-2 q^{15}-3 q^{14}+9 q^{13}+8 q^{12}+6 q^{11}+3 q^{10}-8 q^9-32 q^8-49 q^7-11 q^6+37 q^5+76 q^4+107 q^3+81 q^2-54 q-212-251 q^{-1} -148 q^{-2} +46 q^{-3} +356 q^{-4} +563 q^{-5} +391 q^{-6} -128 q^{-7} -660 q^{-8} -909 q^{-9} -781 q^{-10} +87 q^{-11} +1168 q^{-12} +1681 q^{-13} +1119 q^{-14} -241 q^{-15} -1699 q^{-16} -2671 q^{-17} -1725 q^{-18} +607 q^{-19} +2936 q^{-20} +3550 q^{-21} +2003 q^{-22} -1060 q^{-23} -4410 q^{-24} -4761 q^{-25} -1916 q^{-26} +2652 q^{-27} +5678 q^{-28} +5367 q^{-29} +1472 q^{-30} -4559 q^{-31} -7328 q^{-32} -5327 q^{-33} +674 q^{-34} +6208 q^{-35} +8079 q^{-36} +4586 q^{-37} -3208 q^{-38} -8316 q^{-39} -7915 q^{-40} -1660 q^{-41} +5398 q^{-42} +9250 q^{-43} +6793 q^{-44} -1573 q^{-45} -8066 q^{-46} -9068 q^{-47} -3214 q^{-48} +4294 q^{-49} +9296 q^{-50} +7768 q^{-51} -457 q^{-52} -7437 q^{-53} -9266 q^{-54} -3926 q^{-55} +3449 q^{-56} +8936 q^{-57} +8032 q^{-58} +232 q^{-59} -6790 q^{-60} -9112 q^{-61} -4331 q^{-62} +2667 q^{-63} +8400 q^{-64} +8112 q^{-65} +1020 q^{-66} -5874 q^{-67} -8752 q^{-68} -4884 q^{-69} +1435 q^{-70} +7406 q^{-71} +8086 q^{-72} +2280 q^{-73} -4206 q^{-74} -7852 q^{-75} -5545 q^{-76} -520 q^{-77} +5480 q^{-78} +7506 q^{-79} +3776 q^{-80} -1639 q^{-81} -5888 q^{-82} -5631 q^{-83} -2706 q^{-84} +2560 q^{-85} +5710 q^{-86} +4541 q^{-87} +1092 q^{-88} -2865 q^{-89} -4317 q^{-90} -3881 q^{-91} -403 q^{-92} +2775 q^{-93} +3644 q^{-94} +2560 q^{-95} +60 q^{-96} -1815 q^{-97} -3153 q^{-98} -1883 q^{-99} +69 q^{-100} +1521 q^{-101} +2042 q^{-102} +1371 q^{-103} +334 q^{-104} -1286 q^{-105} -1432 q^{-106} -981 q^{-107} -163 q^{-108} +596 q^{-109} +947 q^{-110} +930 q^{-111} +32 q^{-112} -330 q^{-113} -591 q^{-114} -503 q^{-115} -233 q^{-116} +150 q^{-117} +479 q^{-118} +238 q^{-119} +164 q^{-120} -59 q^{-121} -172 q^{-122} -239 q^{-123} -113 q^{-124} +89 q^{-125} +45 q^{-126} +113 q^{-127} +59 q^{-128} +19 q^{-129} -70 q^{-130} -60 q^{-131} +9 q^{-132} -23 q^{-133} +19 q^{-134} +19 q^{-135} +25 q^{-136} -13 q^{-137} -13 q^{-138} +10 q^{-139} -11 q^{-140} +9 q^{-143} -4 q^{-144} -5 q^{-145} +6 q^{-146} -2 q^{-147} - q^{-149} +2 q^{-150} -2 q^{-152} + q^{-153} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 148]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[13, 18, 14, 19], |
|||
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], |
|||
X[19, 14, 20, 15], X[11, 6, 12, 7], X[2, 8, 3, 7]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 148]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -4, 8, -7, 5, -6, |
|||
4, -8, 7]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 148]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, -16, -6, -18, -20, -10, -14]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 148]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -2, 1, 1, -2, 1, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 148]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 148]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_148_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 148]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 148]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 7 2 3 |
|||
-9 + t - -- + - + 7 t - 3 t + t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 148]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 4 z + 3 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 148]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 148]], KnotSignature[Knot[10, 148]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{31, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 148]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 2 4 5 5 6 4 3 |
|||
-1 - q + -- - -- + -- - -- + -- - -- + - |
|||
7 6 5 4 3 2 q |
|||
q q q q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 148]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 148]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 2 -18 -16 3 -10 2 -6 -4 -2 |
|||
-1 - q - --- - q + q + --- + q + -- + q - q + q |
|||
20 12 8 |
|||
q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 148]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 |
|||
-a + 5 a - 3 a - 2 a z + 9 a z - 3 a z - a z + 5 a z - |
|||
6 4 4 6 |
|||
a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 148]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 9 2 2 |
|||
a + 5 a + 3 a - a z - 3 a z - 5 a z - a z + 2 a z - 3 a z - |
|||
4 2 6 2 8 2 3 3 3 5 3 7 3 |
|||
11 a z - 6 a z + 2 a z + a z + 6 a z + 9 a z + a z - |
|||
9 3 2 4 4 4 6 4 8 4 3 5 |
|||
3 a z + 3 a z + 10 a z + 2 a z - 5 a z - 2 a z - |
|||
5 5 7 5 9 5 4 6 6 6 8 6 3 7 |
|||
7 a z - 4 a z + a z - 3 a z - a z + 2 a z + a z + |
|||
5 7 7 7 4 8 6 8 |
|||
3 a z + 2 a z + a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 148]], Vassiliev[3][Knot[10, 148]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, -7}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 148]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 2 1 1 1 3 1 2 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
|||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
|||
q q t q t q t q t q t q t q t |
|||
3 2 3 3 1 3 |
|||
----- + ----- + ----- + ----- + ---- + ---- + q t |
|||
9 3 7 3 7 2 5 2 5 3 |
|||
q t q t q t q t q t q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 148], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 2 6 7 5 17 9 16 26 5 26 |
|||
-2 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
|||
22 20 19 18 17 16 15 14 13 12 |
|||
q q q q q q q q q q |
|||
29 -10 30 26 5 24 15 6 12 4 3 |
|||
--- + q - -- + -- + -- - -- + -- + -- - -- + -- + - |
|||
11 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 22:30, 27 May 2009
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 148's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X8493 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7 |
Dowker-Thistlethwaite code | 4 8 -12 2 -16 -6 -18 -20 -10 -14 |
Conway Notation | [(3,2)(3,2-)] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 5}, {2, 4}, {1, 3}, {13, 6}, {5, 12}, {10, 13}, {11, 7}, {6, 8}, {4, 10}, {7, 9}, {8, 11}, {12, 2}, {9, 1}] |
[edit Notes on presentations of 10 148]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 148"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X5,12,6,13 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X11,6,12,7 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 9, 10, -2, -5, 6, -9, 3, -4, 8, -7, 5, -6, 4, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 -16 -6 -18 -20 -10 -14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[(3,2)(3,2-)] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 5}, {2, 4}, {1, 3}, {13, 6}, {5, 12}, {10, 13}, {11, 7}, {6, 8}, {4, 10}, {7, 9}, {8, 11}, {12, 2}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 148"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 148"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, -7) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 148. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|