The Kauffman Polynomial: Difference between revisions
No edit summary |
No edit summary |
||
(17 intermediate revisions by 8 users not shown) | |||
Line 7: | Line 7: | ||
(here <math>s</math> is a strand and <math>s_\pm</math> is the same strand with a <math>\pm</math> kink added) and |
(here <math>s</math> is a strand and <math>s_\pm</math> is the same strand with a <math>\pm</math> kink added) and |
||
<center><math>L( |
<center><math>L(\backoverslash)+L(\slashoverback) = z\left(L(\smoothing)+L(\hsmoothing)\right)</math></center> |
||
and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]]. |
|||
<code>KnotTheory`</code> knows about the Kauffman polynomial: |
|||
{{Startup Note}} |
|||
\latexhtml{\small (for {\tt In[1]} see |
|||
Section~\ref{sec:Setup}.)}{\htmlref{{\tt In[1]}}{sec:Setup}} |
|||
%<* InOut[1] *> |
|||
⚫ | |||
\index{Kauffman, Louis} \index{Morrison, Scott} |
|||
<!--Robot Land, no human edits to "END"--> |
|||
⚫ | |||
{{HelpAndAbout| |
|||
n = 2 | |
|||
n1 = 3 | |
|||
in = <nowiki>Kauffman</nowiki> | |
|||
out= <nowiki>Kauffman[K][a, z] computes the Kauffman polynomial of a knot or link K, in the variables a and z.</nowiki> | |
|||
about= <nowiki>The Kauffman polynomial program was written by Scott Morrison.</nowiki>}} |
|||
<!--END--> |
|||
Thus, for example, here's the Kauffman polynomial of the knot |
Thus, for example, here's the Kauffman polynomial of the knot [[5_2]]: |
||
⚫ | |||
\hlink{../Knots/5.2.html}{$5_2$}: |
|||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 4 | |
|||
in = <nowiki>Kauffman[Knot[5, 2]][a, z]</nowiki> | |
|||
out= <nowiki> 2 4 6 5 7 2 2 4 2 6 2 3 3 |
|||
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z + |
|||
5 3 7 3 4 4 6 4 |
|||
2 a z + a z + a z + a z</nowiki>}} |
|||
<!--END--> |
|||
{{Knot Image Pair|5_2|gif|T(8,3)|jpg}} |
|||
⚫ | |||
\vskip 6pt |
|||
⚫ | |||
\index{Jones polynomial} \index{Jones@{\tt Jones}} |
|||
⚫ | |||
polynomial via |
|||
⚫ | |||
⚫ | |||
$K$. Let us verify this fact for the torus knot |
|||
\hlink{../TorusKnots/8.3.html}{$T(8,3)$}: |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
<!--Robot Land, no human edits to "END"--> |
|||
{{In| |
|||
n = 5 | |
|||
in = <nowiki>K = TorusKnot[8, 3];</nowiki>}} |
|||
<!--END--> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 6 | |
|||
in = <nowiki>Simplify[{ |
|||
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)], |
|||
Jones[K][q] |
|||
}]</nowiki> | |
|||
out= <nowiki> 7 9 16 7 9 16 |
|||
{q + q - q , q + q - q }</nowiki>}} |
|||
<!--END--> |
|||
{{note|Kauffman}} L. H. Kauffman, ''An invariant of regular isotopy'', Trans. Amer. Math. Soc. '''312''' (1990) 417-471. |
{{note|Kauffman}} L. H. Kauffman, ''An invariant of regular isotopy'', Trans. Amer. Math. Soc. '''312''' (1990) 417-471. |
Latest revision as of 17:23, 21 February 2013
The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations
(here is a strand and is the same strand with a kink added) and
and by the initial condition where is the unknot .
KnotTheory`
knows about the Kauffman polynomial:
(For In[1] see Setup)
|
|
Thus, for example, here's the Kauffman polynomial of the knot 5_2:
In[4]:=
|
Kauffman[Knot[5, 2]][a, z]
|
Out[4]=
|
2 4 6 5 7 2 2 4 2 6 2 3 3
-a + a + a - 2 a z - 2 a z + a z - a z - 2 a z + a z +
5 3 7 3 4 4 6 4
2 a z + a z + a z + a z
|
5_2 |
T(8,3) |
It is well known that the Jones polynomial is related to the Kauffman polynomial via
where is some knot or link and where is the number of components of . Let us verify this fact for the torus knot T(8,3):
In[5]:=
|
K = TorusKnot[8, 3];
|
In[6]:=
|
Simplify[{
(-1)^(Length[Skeleton[K]]-1)Kauffman[K][-q^(-3/4), q^(1/4)+q^(-1/4)],
Jones[K][q]
}]
|
Out[6]=
|
7 9 16 7 9 16
{q + q - q , q + q - q }
|
[Kauffman] ^ L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.