Cabling: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Manual TOC Sidebar}} |
{{Manual TOC Sidebar}} |
||
<code>CableComponent[BR[n,js],K]</code> returns the <math>n</math>-th cable of the knot <math>K</math> with the braid on n strands with crossings js = {j1, j2, ...} inserted in it. It also performs the necessary number of 1/n-twists on the components of the cable to compensate for a non-zero writhe number of the original knot. Cabling knot [[3_1]], for instance, and inserting the braid BR[3,{1,2}], we get: |
<code>CableComponent[BR[n,js],K]</code>, whose code is available [[CableComponent.m|here]], returns the <math>n</math>-th cable of the knot <math>K</math> with the braid on <math>n</math> strands with crossings <code>js = {j1, j2, ...}</code> inserted in it. It also performs the necessary number of <math>1/n</math>-twists on the components of the cable to compensate for a non-zero writhe number of the original knot. Cabling knot [[3_1]], for instance, and inserting the braid <code>BR[3,{1,2}]</code>, we get: |
||
{{Startup Note}} |
{{Startup Note}} |
||
<!--$$Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
|||
{{In| |
|||
n = 2 | |
|||
in = <nowiki>Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];</nowiki>}} |
|||
<!--END--> |
|||
<!--$$CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink$$--> |
<!--$$CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{Graphics| |
{{Graphics| |
||
n = |
n = 3 | |
||
in = <nowiki>CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink</nowiki> | |
in = <nowiki>CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink</nowiki> | |
||
img= |
img= Cabling_Out_3.gif | |
||
out= <nowiki>-Graphics-</nowiki>}} |
out= <nowiki>-Graphics-</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
For some special cases, we can check our result using [[ |
For some special cases, we can check our result using [[Burau's Theorem]]. |
||
<!--$$CableComponent[n_integer, K_] := CableComponent[BR[n, {}], K]; |
|||
CableComponent[BR[n_Integer, js_List], K_] := |
|||
Module[{BC, C0, C1, C2, CC1, CS1, CS2, L, S, a, e, h, i, i1, i2, j, |
|||
j1, j2, jss, k, k1, kjs, out, out0, out1, p, p1, pos, q, r, s, ss, |
|||
t, t0, t1, t2, tj, v, w, writhe}, |
|||
L = PD[K]; |
|||
kjs = BR[L][[2]]; |
|||
For[i1 = 1; writhe = 0, i1 <= Length[kjs], i1++, |
|||
writhe = writhe + Sign[kjs[[i1]]]]; |
|||
For[i2 = 1; jss[0] = js, i2 <= n Abs[writhe], i2++, |
|||
jss[i2] = |
|||
Flatten[{jss[i2 - 1], Table[-Sign[writhe] e, {e, n - 1}]}]]; |
|||
k1 = Length[jss[n Abs[writhe]]]; |
|||
For[i = 1, i <= n, i++, s[i] = a[i] = i]; |
|||
For[ |
|||
j = 1, j <= k1, j++, |
|||
p = Select[Range[n], Abs[jss[n Abs[writhe]][[j]]] == a[#] &][[ |
|||
1]]; |
|||
q = Select[Range[n], a[#] == a[p] + 1 &][[1]]; |
|||
If[jss[n Abs[writhe]][[j]] > 0, |
|||
K[j] = X[s[q], n + 2 j, n + 2 j - 1, s[p]], |
|||
K[j] = X[s[p], s[q], n + 2 j, n + 2 j - 1]]; |
|||
s[p] = n + 2 j; |
|||
s[q] = n + 2 j - 1; |
|||
a[p]++; |
|||
a[q]-- |
|||
]; |
|||
BC = Table[K[d], {d, k1}]; |
|||
If[Jones[L][q] === 1, |
|||
For[j1 = 1, j1 <= Length[BC], j1++, |
|||
For[i = 1, i <= n, i++, BC[[j1]] = BC[[j1]] /. s[i] :> a[i] |
|||
]]; |
|||
If[BC == {}, BC = {Loop[1]}]; |
|||
out1 = PD @@ BC, |
|||
For[j2 = 1, j2 <= Length[BC], j2++, |
|||
For[tj = 1, tj <= n, tj++, BC[[j2]] = BC[[j2]] /. tj :> 1[tj]] |
|||
]; |
|||
p1 = Select[Range[n], # != s[#] &]; |
|||
S = Select[L, MemberQ[#, 1] && MemberQ[#, 2] & ]; |
|||
pos = Position[S, 1][[1, 2]]; |
|||
r = Select[Table[i, {i, Length[L]}], L[[#]] == Flatten @@ S &][[ |
|||
1]]; |
|||
k = 0; |
|||
out0 = L /. X[a_, b_, c_, d_] :> ( |
|||
++k; |
|||
Table[ |
|||
X[h[i, j - 1, k], v[i, j, k], h[i, j, k], v[i - 1, j, k]], |
|||
{i, n}, {j, n} |
|||
] /. {h[i_, 0, _] :> a[i], h[i_, n, _] :> c[i]} /. If[ |
|||
d - b == 1 || b - d > 1, |
|||
{v[0, j_, _] :> d[j], |
|||
v[n, j_, _] :> b[j]}, {v[0, j_, _] :> d[n + 1 - j], |
|||
v[n, j_, _] :> b[n + 1 - j]} |
|||
] |
|||
); |
|||
w = Flatten@out0[[r]]; |
|||
out = PD @@ Flatten[Join @@ out0]; |
|||
ss = Table[a[i], {i, n}][[p1]]; |
|||
CC1 = List @@ out; |
|||
For[t0 = 1, t0 <= Length[ss], t0++, |
|||
C0[t0] = Select[w, MemberQ[#, 1[ss[[t0]]]] &]; |
|||
C1[t0] = |
|||
Select[C0[t0], |
|||
Mod[Position[#, 1[ss[[t0]]]][[1, 1]], 2] == Mod[pos, 2] &]; |
|||
C2[t0] = |
|||
C1[t0] /. 1[ss[[t0]]] :> |
|||
s[Select[Range[n], a[#] == ss[[t0]] &][[1]]]]; |
|||
CS1 = Flatten[Table[C1[t1], {t1, Length[ss]}]]; |
|||
CS2 = Flatten[Table[C2[t2], {t2, Length[ss]}]]; |
|||
For[i = 1, i <= Length[CS1], i++, |
|||
CC1 = DeleteCases[CC1, CS1[[i]]]]; |
|||
out1 = Union[BC, CC1, CS2]; |
|||
PD @@ out1; |
|||
k = 0; |
|||
out1 = |
|||
PD @@ ( out1 /. ((# -> ++k) & /@ (List @@ Union @@ out1)))]]; |
|||
$$--> |
|||
<!--Robot Land, no human edits to "END"--> |
|||
{{In| |
|||
n = 3 | |
|||
in = <nowiki>CableComponent[n_integer, K_] := CableComponent[BR[n, {}], K]; |
|||
CableComponent[BR[n_Integer, js_List], K_] := |
|||
Module[{BC, C0, C1, C2, CC1, CS1, CS2, L, S, a, e, h, i, i1, i2, j, |
|||
j1, j2, jss, k, k1, kjs, out, out0, out1, p, p1, pos, q, r, s, ss, |
|||
t, t0, t1, t2, tj, v, w, writhe}, |
|||
L = PD[K]; |
|||
kjs = BR[L][[2]]; |
|||
For[i1 = 1; writhe = 0, i1 <= Length[kjs], i1++, |
|||
writhe = writhe + Sign[kjs[[i1]]]]; |
|||
For[i2 = 1; jss[0] = js, i2 <= n Abs[writhe], i2++, |
|||
jss[i2] = |
|||
Flatten[{jss[i2 - 1], Table[-Sign[writhe] e, {e, n - 1}]}]]; |
|||
k1 = Length[jss[n Abs[writhe]]]; |
|||
For[i = 1, i <= n, i++, s[i] = a[i] = i]; |
|||
For[ |
|||
j = 1, j <= k1, j++, |
|||
p = Select[Range[n], Abs[jss[n Abs[writhe]][[j]]] == a[#] &][[ |
|||
1]]; |
|||
q = Select[Range[n], a[#] == a[p] + 1 &][[1]]; |
|||
If[jss[n Abs[writhe]][[j]] > 0, |
|||
K[j] = X[s[q], n + 2 j, n + 2 j - 1, s[p]], |
|||
K[j] = X[s[p], s[q], n + 2 j, n + 2 j - 1]]; |
|||
s[p] = n + 2 j; |
|||
s[q] = n + 2 j - 1; |
|||
a[p]++; |
|||
a[q]-- |
|||
]; |
|||
BC = Table[K[d], {d, k1}]; |
|||
If[Jones[L][q] === 1, |
|||
For[j1 = 1, j1 <= Length[BC], j1++, |
|||
For[i = 1, i <= n, i++, BC[[j1]] = BC[[j1]] /. s[i] :> a[i] |
|||
]]; |
|||
If[BC == {}, BC = {Loop[1]}]; |
|||
out1 = PD @@ BC, |
|||
For[j2 = 1, j2 <= Length[BC], j2++, |
|||
For[tj = 1, tj <= n, tj++, BC[[j2]] = BC[[j2]] /. tj :> 1[tj]] |
|||
]; |
|||
p1 = Select[Range[n], # != s[#] &]; |
|||
S = Select[L, MemberQ[#, 1] && MemberQ[#, 2] & ]; |
|||
pos = Position[S, 1][[1, 2]]; |
|||
r = Select[Table[i, {i, Length[L]}], L[[#]] == Flatten @@ S &][[ |
|||
1]]; |
|||
k = 0; |
|||
out0 = L /. X[a_, b_, c_, d_] :> ( |
|||
++k; |
|||
Table[ |
|||
X[h[i, j - 1, k], v[i, j, k], h[i, j, k], v[i - 1, j, k]], |
|||
{i, n}, {j, n} |
|||
] /. {h[i_, 0, _] :> a[i], h[i_, n, _] :> c[i]} /. If[ |
|||
d - b == 1 || b - d > 1, |
|||
{v[0, j_, _] :> d[j], |
|||
v[n, j_, _] :> b[j]}, {v[0, j_, _] :> d[n + 1 - j], |
|||
v[n, j_, _] :> b[n + 1 - j]} |
|||
] |
|||
); |
|||
w = Flatten@out0[[r]]; |
|||
out = PD @@ Flatten[Join @@ out0]; |
|||
ss = Table[a[i], {i, n}][[p1]]; |
|||
CC1 = List @@ out; |
|||
For[t0 = 1, t0 <= Length[ss], t0++, |
|||
C0[t0] = Select[w, MemberQ[#, 1[ss[[t0]]]] &]; |
|||
C1[t0] = |
|||
Select[C0[t0], |
|||
Mod[Position[#, 1[ss[[t0]]]][[1, 1]], 2] == Mod[pos, 2] &]; |
|||
C2[t0] = |
|||
C1[t0] /. 1[ss[[t0]]] :> |
|||
s[Select[Range[n], a[#] == ss[[t0]] &][[1]]]]; |
|||
CS1 = Flatten[Table[C1[t1], {t1, Length[ss]}]]; |
|||
CS2 = Flatten[Table[C2[t2], {t2, Length[ss]}]]; |
|||
For[i = 1, i <= Length[CS1], i++, |
|||
CC1 = DeleteCases[CC1, CS1[[i]]]]; |
|||
out1 = Union[BC, CC1, CS2]; |
|||
PD @@ out1; |
|||
k = 0; |
|||
out1 = |
|||
PD @@ ( out1 /. ((# -> ++k) & /@ (List @@ Union @@ out1)))]]; |
|||
</nowiki>}} |
|||
<!--END--> |
Latest revision as of 14:06, 20 October 2013
CableComponent[BR[n,js],K]
, whose code is available here, returns the -th cable of the knot with the braid on strands with crossings js = {j1, j2, ...}
inserted in it. It also performs the necessary number of -twists on the components of the cable to compensate for a non-zero writhe number of the original knot. Cabling knot 3_1, for instance, and inserting the braid BR[3,{1,2}]
, we get:
(For In[1] see Setup)
In[2]:=
|
Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];
|
In[3]:=
|
CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink
|
Out[3]=
|
-Graphics-
|
For some special cases, we can check our result using Burau's Theorem.