Cabling: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
{{Startup Note}} |
{{Startup Note}} |
||
⚫ | |||
<!--Robot Land, no human edits to "END"--> |
|||
⚫ | |||
{{In| |
|||
n = 2 | |
|||
in = <nowiki>Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];</nowiki>}} |
|||
<!--END--> |
|||
<!--$$CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink$$--> |
<!--$$CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
Latest revision as of 14:06, 20 October 2013
CableComponent[BR[n,js],K]
, whose code is available here, returns the -th cable of the knot with the braid on strands with crossings js = {j1, j2, ...}
inserted in it. It also performs the necessary number of -twists on the components of the cable to compensate for a non-zero writhe number of the original knot. Cabling knot 3_1, for instance, and inserting the braid BR[3,{1,2}]
, we get:
(For In[1] see Setup)
In[2]:=
|
Import["http://katlas.org/w/index.php?title=CableComponent.m&action=raw"];
|
In[3]:=
|
CableComponent[BR[3, {1, 2}], Knot[3, 1]] // DrawMorseLink
|
Out[3]=
|
-Graphics-
|
For some special cases, we can check our result using Burau's Theorem.