T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 15: Line 15:
{|
{|
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|style="padding-left: 1em;" | PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30], X[16, 2, 17, 1], X[9, 3, 10, 2]]
|style="padding-left: 1em;" | ToString[X[17, 25, 18, 24], FormatType -> HTMLForm]<> <>ToString[X[10, 26, 11, 25], FormatType -> HTMLForm]<> <>ToString[X[3, 27, 4, 26], FormatType -> HTMLForm]<> <>ToString[X[11, 19, 12, 18], FormatType -> HTMLForm]<> <>ToString[X[4, 20, 5, 19], FormatType -> HTMLForm]<> <>ToString[X[27, 21, 28, 20], FormatType -> HTMLForm]<> <>ToString[X[5, 13, 6, 12], FormatType -> HTMLForm]<> <>ToString[X[28, 14, 29, 13], FormatType -> HTMLForm]<> <>ToString[X[21, 15, 22, 14], FormatType -> HTMLForm]<> <>ToString[X[29, 7, 30, 6], FormatType -> HTMLForm]<> <>ToString[X[22, 8, 23, 7], FormatType -> HTMLForm]<> <>ToString[X[15, 9, 16, 8], FormatType -> HTMLForm]<> <>ToString[X[23, 1, 24, 30], FormatType -> HTMLForm]<> <>ToString[X[16, 2, 17, 1], FormatType -> HTMLForm]<> <>ToString[X[9, 3, 10, 2], FormatType -> HTMLForm]<>
|-
|-
|'''[[Gauss Codes|Gauss code]]'''
|'''[[Gauss Codes|Gauss code]]'''

Revision as of 14:55, 26 August 2005


[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]]

T(7,3)

[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]]

T(15,2)

Visit T(5,4)'s page at Knotilus!

Visit T(5,4)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation ToString[X[17, 25, 18, 24], FormatType -> HTMLForm]<> <>ToString[X[10, 26, 11, 25], FormatType -> HTMLForm]<> <>ToString[X[3, 27, 4, 26], FormatType -> HTMLForm]<> <>ToString[X[11, 19, 12, 18], FormatType -> HTMLForm]<> <>ToString[X[4, 20, 5, 19], FormatType -> HTMLForm]<> <>ToString[X[27, 21, 28, 20], FormatType -> HTMLForm]<> <>ToString[X[5, 13, 6, 12], FormatType -> HTMLForm]<> <>ToString[X[28, 14, 29, 13], FormatType -> HTMLForm]<> <>ToString[X[21, 15, 22, 14], FormatType -> HTMLForm]<> <>ToString[X[29, 7, 30, 6], FormatType -> HTMLForm]<> <>ToString[X[22, 8, 23, 7], FormatType -> HTMLForm]<> <>ToString[X[15, 9, 16, 8], FormatType -> HTMLForm]<> <>ToString[X[23, 1, 24, 30], FormatType -> HTMLForm]<> <>ToString[X[16, 2, 17, 1], FormatType -> HTMLForm]<> <>ToString[X[9, 3, 10, 2], FormatType -> HTMLForm]<>
Gauss code -1, 7, -2, 1, -3, 5, -4, 6, -7, 2, -6, 3, -5, 4
Dowker-Thistlethwaite code 4 10 12 14 2 8 6

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index (super bridge index) 2 (4)
Nakanishi index 1

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,4)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,4)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (15, 50)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(5,4)/V 2,1 Data:T(5,4)/V 3,1 Data:T(5,4)/V 4,1 Data:T(5,4)/V 4,2 Data:T(5,4)/V 4,3 Data:T(5,4)/V 5,1 Data:T(5,4)/V 5,2 Data:T(5,4)/V 5,3 Data:T(5,4)/V 5,4 Data:T(5,4)/V 6,1 Data:T(5,4)/V 6,2 Data:T(5,4)/V 6,3 Data:T(5,4)/V 6,4 Data:T(5,4)/V 6,5 Data:T(5,4)/V 6,6 Data:T(5,4)/V 6,7 Data:T(5,4)/V 6,8 Data:T(5,4)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Template:Khovanov Invariants Template:Quantum Invariants