T(5,4): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 68: | Line 68: | ||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em">In[3]:=</pre></td><td><pre style="color: red; border: 0px; padding: 0em">PD[TorusKnot[5, 4]]</pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em">In[3]:=</pre></td><td><pre style="color: red; border: 0px; padding: 0em">PD[TorusKnot[5, 4]]</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em">Out[3]= </pre></td><td><pre style="color: black; border: 0px; padding: 0em">PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em">Out[3]= </pre></td><td><pre style="color: black; border: 0px; padding: 0em">PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], |
||
X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], |
X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], |
||
X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], |
X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], |
||
X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30], |
X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30], |
||
X[16, 2, 17, 1], X[9, 3, 10, 2]]</pre></td></tr> |
X[16, 2, 17, 1], X[9, 3, 10, 2]]</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em">In[4]:=</pre></td><td><pre style="color: red; border: 0px; padding: 0em">GaussCode[TorusKnot[5, 4]]</pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em">In[4]:=</pre></td><td><pre style="color: red; border: 0px; padding: 0em">GaussCode[TorusKnot[5, 4]]</pre></td></tr> |
Revision as of 16:14, 26 August 2005
[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]] |
[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]] |
Visit T(5,4)'s page at Knotilus!
Visit T(5,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2 |
Gauss code | {14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13} |
Dowker-Thistlethwaite code | 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(5,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 50}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ | |||||||||
27 | 1 | -1 | ||||||||||||||||||
25 | 1 | -1 | ||||||||||||||||||
23 | 1 | 1 | 1 | -1 | ||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||
19 | 1 | 1 | 1 | 1 | ||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||
13 | 1 | 1 | ||||||||||||||||||
11 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[5, 4]] |
Out[2]= | 15 |
In[3]:= | PD[TorusKnot[5, 4]] |
Out[3]= | PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26],X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30],X[16, 2, 17, 1], X[9, 3, 10, 2]] |
In[4]:= | GaussCode[TorusKnot[5, 4]] |
Out[4]= | GaussCode[14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13] |
In[5]:= | BR[TorusKnot[5, 4]] |
Out[5]= | BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}] |
In[6]:= | alex = Alexander[TorusKnot[5, 4]][t] |
Out[6]= | -6 -5 -2 2 5 6 -1 + t - t + t + t - t + t |
In[7]:= | Conway[TorusKnot[5, 4]][z] |
Out[7]= | 2 4 6 8 10 12 1 + 15 z + 56 z + 77 z + 44 z + 11 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[5, 4]], KnotSignature[TorusKnot[5, 4]]} |
Out[9]= | {5, 8} |
In[10]:= | J=Jones[TorusKnot[5, 4]][q] |
Out[10]= | 6 8 10 11 13 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[5, 4]][q] |
Out[12]= | 22 24 26 28 30 32 34 36 38 40 |
In[13]:= | Kauffman[TorusKnot[5, 4]][a, z] |
Out[13]= | 2 2-18 9 21 14 z 8 z 28 z 21 z z 22 z |
In[14]:= | {Vassiliev[2][TorusKnot[5, 4]], Vassiliev[3][TorusKnot[5, 4]]} |
Out[14]= | {0, 50} |
In[15]:= | Kh[TorusKnot[5, 4]][q, t] |
Out[15]= | 11 13 15 2 19 3 17 4 19 4 21 5 23 5 |