The Coloured Jones Polynomials: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 59: Line 59:
<!--END-->
<!--END-->


The coloured Jones polynomial of \hlink{../Knots/3.1.html}{$3_1$} is
The coloured Jones polynomial of [[3_1]] is computed via a single summation. Indeed,
computed via a single summation. Indeed,


<*InOut@"s = CJ`Summand[Mirror[Knot[3, 1]], n]"*>
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$-->
<!--END-->
\vskip 6pt


The symbols in the above formula require a definition:
The symbols in the above formula require a definition:


<!--$$?qPochhammer$$-->
\index{Riese, Axel} \index{Weisstein, Eric}
<!--END-->
<* HelpBox[{qPochhammer, qBinomial}] *>


<!--$$?qBinomial$$-->
More precisely, {\tt qPochhammer[a, q, k]} is
<!--END-->
\[

(a;q)_k=\begin{cases}
More precisely, <code>qPochhammer[a, q, k]</code> is
<center><math>(a;q)_k=\begin{cases}
(1-a)(1-aq)\dots(1-aq^{k-1}) & k>0 \\
(1-a)(1-aq)\dots(1-aq^{k-1}) & k>0 \\
1 & k=0 \\
1 & k=0 \\
\left((1-aq^{-1})(1-aq^{-2})\dots(1-aq^{k})\right)^{-1} & k<0
\left((1-aq^{-1})(1-aq^{-2})\dots(1-aq^{k})\right)^{-1} & k<0
\end{cases}
\end{cases}
</math</center>
\]

and {\tt qBinomial[n, k, q]} is
and <code>qBinomial[n, k, q]</math> is
\[

<center><math>
\binom{n}{k}_q = \begin{cases}
\binom{n}{k}_q = \begin{cases}
\frac
\frac
Line 87: Line 90:
0 & k<0.
0 & k<0.
\end{cases}
\end{cases}
</math</center>
\]


The function {\tt qExpand} replaces every occurence of a {\tt qPochhammer}
The function <code>qExpand</code> replaces every occurence of a <code>qPochhammer[a, q, k]</code>
symbol or a {\tt qBinomial} symbol by its definition:
symbol or a <code>qBinomial[n, k, q]</math> symbol by its definition:


<* HelpBox[qExpand] *>
<!--$$?qExpand$$-->
<!--END-->


Hence,
Hence,


<*InOut@"qPochhammer[a, q, 6] // qExpand"*>
<!--$$qPochhammer[a, q, 6] // qExpand$$-->
<!--END-->
<*InOut@"First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand"*>

\vskip 6pt
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$-->
<!--END-->


Finally,
Finally,


<* ColoredJones=.; HelpBox[ColoredJones] *>
<!--$ColoredJones=.$--><!--END-->

<!--$$?ColoredJones$$-->
<!--END-->


{{note|Garoufalidis Le}} S. Garoufalidis and T. Q. T. Le, ''The Colored Jones Function is <math>q</math>-Holonomic'', Georgia Institute of Technology preprint, September 2003, {{arXiv|math.GT/0309214}}.
{{note|Garoufalidis Le}} S. Garoufalidis and T. Q. T. Le, ''The Colored Jones Function is <math>q</math>-Holonomic'', Georgia Institute of Technology preprint, September 2003, {{arXiv|math.GT/0309214}}.

Revision as of 17:05, 26 August 2005


KnotTheory` can compute the coloured Jones polynomial of braid closures, using the same formulas as in [Garoufalidis Le]:

(For In[1] see Setup)

In[2]:= ?ColouredJones

ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.

In[3]:= ColouredJones::about

The ColouredJones program was written jointly with Stavros Garoufalidis, based on formulas provided to us by Thang Le.

Thus, for example, here's the coloured Jones polynomial of the knot 4_1 in the 4-dimensional representation of :

In[4]:=
ColouredJones[Knot[4, 1], 3][q]
Out[4]=
     -12    -11    -10   2    2    3    3       2      4      6      8    10    11    12
3 + q    - q    - q    + -- - -- + -- - -- - 3 q  + 3 q  - 2 q  + 2 q  - q   - q   + q
                          8    6    4    2
                         q    q    q    q

And here's the coloured Jones polynomial of the same knot in the two dimensional representation of ; this better be equal to the ordinary Jones polynomial of 4_1!

In[5]:=
ColouredJones[Knot[4, 1], 1][q]
Out[5]=
     -2   1        2
1 + q   - - - q + q
          q
In[6]:=
Jones[Knot[4, 1]][q]
Out[6]=
     -2   1        2
1 + q   - - - q + q
          q
In[7]:= ?CJ`Summand

CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.

The coloured Jones polynomial of 3_1 is computed via a single summation. Indeed,


The symbols in the above formula require a definition:


More precisely, qPochhammer[a, q, k] is

is
symbol by its definition:


Hence,


Finally,


[Garoufalidis Le] ^  S. Garoufalidis and T. Q. T. Le, The Colored Jones Function is -Holonomic, Georgia Institute of Technology preprint, September 2003, arXiv:math.GT/0309214.