T(7,3): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- Script generated - do not edit! --> |
<!-- Script generated - do not edit! --> |
||
<!-- --> |
|||
<!-- $Failed$Failedv$ileddge] at [h$Failedn.matuwo . ca |
|||
-------- |
|||
<span id="top"></span> |
|||
caidmK$Faidaileds$idpa$Faidnt$iledaedtres$Failedgr$Failedadding-left: 1em;" | X<sub>3146<u b 152/s$Failed62</sub> |
|||
{{Knot Navigation Links|prev=T(13,2).jpg|next=T(5,4).jpg}} |
|||
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,3,4,-6,-7,9,10,-12,-13,1,2,-4,-5,7,8,-10,-11,13,14,-2,-3,5,6,-8,-9,11,12,-14/goTop.html T(7,3)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/7.3.html T(7,3)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>1,11,2,10</sub> X<sub>20,12,21,11</sub> X<sub>21,3,22,2</sub> X<sub>12,4,13,3</sub> X<sub>13,23,14,22</sub> X<sub>4,24,5,23</sub> X<sub>5,15,6,14</sub> X<sub>24,16,25,15</sub> X<sub>25,7,26,6</sub> X<sub>16,8,17,7</sub> X<sub>17,27,18,26</sub> X<sub>8,28,9,27</sub> X<sub>9,19,10,18</sub> X<sub>28,20,1,19</sub> |
|||
|- |
|- |
||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|'''[[GausCeGss cod$Failede=$Faile$Failed1, 2, -3, 1} |
|||
|style="padding-left: 1em;" | {-1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14} |
|||
'$Failed (Dowk-ThistlaeCes|Dowr - T2aepa$Faeal Invarnts|name=T(3,2)}} |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 10 -12 14 -16 18 -20 22 -24 26 -28 2 -4 6 -8 |
|||
|} |
|||
===Polynomial invariants=== |
|||
===[[Finite Type (Vassiliev)nvaanFailed===$Failed''' |
|||
|style="padding-left: 1em;"$Failed) |
|||
{{Polynomial Invariants|name=T(7,3)}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | {0, 56}) |
|||
|} |
|} |
||
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>8 is the signature of T(7,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
[[KhovHomolo$Failedeffi oven$Failed> are shoFaile</math>, over ternationmathmath>). The squares th < failedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><$Failedn=center> |
|||
<td wid$Failedled$Failed>j</td><td> </td$Failed/tr> |
|||
<center><table border=1> |
|||
</tab$Failed/$Failedlednter><td>9</td>$Failed><t$Failedo$Failedo$Fail$Failediled>$Failed&$Failedd$Failed>$Faed > $Fa$Fled style="color: red; borpadding:0"><< KnotTheory$Failed |
|||
<tr align=center> |
|||
</tr>$$Failed9$Failedd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Failedp $Failedd$Faile$Failailed > --(--(-$Failed------)) tdtd><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$Failedd,$Faileds$Failedi$Failed<$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$Faido$Failed>$Failedea$Failed<$Failedd$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failednbsp ((($Failed & ) nbsp; ) & )/now$Faile t |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
-$Failed+ borde $Failed < $Fa |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failed 0px; padd$Failedpre></td><t$Failedadding: 0em"><now$Failed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failednowiki>Out[9]= </nowiki></pre></td><td><p$Failedding: 0em"><nowik$Failed/$Failed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Fapaddg: 0em"><nowiki>S$Faileds$Failedq$Failed<$Failedl$Failedr$Failedk$Failedl$Failedi$Failedt$Failedp$Failedt$Failedi$FailedK$Failedt$Failedorder: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 12 14 |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
q + q + 2 q + q - q - q</nowiki></pre></td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[3, 2]][a, z]</nowiki></pre></td></tr> |
|||
</table></td> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>χ</td></tr> |
|||
-4 2 z z z z |
|||
<tr align=center><td>29</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td>-1</td></tr> |
|||
-a - -- + -- + -- + -- + -- |
|||
<tr align=center><td>27</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
2 5 3 4 2 |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
a a a a a</nowiki></pre></td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr> |
|||
<tr |
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3 |
|||
<tr align=center><td>15</td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
q + q + q t + q t</nowiki></pre></td></tr> |
|||
<tr align=center><td>13</td><td bgcolor=red>1</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>14</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 11, 2, 10], X[20, 12, 21, 11], X[21, 3, 22, 2], |
|||
X[12, 4, 13, 3], X[13, 23, 14, 22], X[4, 24, 5, 23], X[5, 15, 6, 14], |
|||
X[24, 16, 25, 15], X[25, 7, 26, 6], X[16, 8, 17, 7], |
|||
X[17, 27, 18, 26], X[8, 28, 9, 27], X[9, 19, 10, 18], |
|||
X[28, 20, 1, 19]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, |
|||
-11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[7, 3]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[7, 3]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -3 -2 2 3 5 6 |
|||
1 + t - t + t - t - t + t - t + t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[7, 3]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
|||
1 + 16 z + 60 z + 78 z + 44 z + 11 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[7, 3]], KnotSignature[TorusKnot[7, 3]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 8}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[7, 3]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 14 |
|||
q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
Include[ColouredJonesM.mhtml] |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[7, 3]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 22 24 26 28 30 32 34 38 40 42 |
|||
q + q + 2 q + 2 q + 2 q + q + q - q - 2 q - 2 q - |
|||
44 46 56 |
|||
2 q - q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[7, 3]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 3 3 |
|||
5 16 12 16 z 16 z 10 z 76 z 66 z 60 z 60 z |
|||
--- + --- + --- - ---- - ---- - ----- - ----- - ----- + ----- + ----- + |
|||
16 14 12 15 13 16 14 12 15 13 |
|||
a a a a a a a a a a |
|||
4 4 4 5 5 6 6 6 |
|||
6 z 138 z 132 z 78 z 78 z z 122 z 121 z |
|||
---- + ------ + ------ - ----- - ----- - --- - ------ - ------ + |
|||
16 14 12 15 13 16 14 12 |
|||
a a a a a a a a |
|||
7 7 8 8 9 9 10 10 |
|||
44 z 44 z 55 z 55 z 11 z 11 z 12 z 12 z |
|||
----- + ----- + ----- + ----- - ----- - ----- - ------ - ------ + |
|||
15 13 14 12 15 13 14 12 |
|||
a a a a a a a a |
|||
11 11 12 12 |
|||
z z z z |
|||
--- + --- + --- + --- |
|||
15 13 14 12 |
|||
a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[7, 3]], Vassiliev[3][TorusKnot[7, 3]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 56}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[7, 3]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 13 15 2 19 3 17 4 19 4 21 5 23 5 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
|||
21 6 25 7 23 8 25 8 27 9 29 9 |
|||
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
|||
</table> |
</table> |
Revision as of 18:35, 26 August 2005
[[Image:T(13,2).{{{ext}}}|80px|link=T(13,2)]] |
[[Image:T(5,4).{{{ext}}}|80px|link=T(5,4)]] |
Visit T(7,3)'s page at Knotilus!
Visit T(7,3)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X1,11,2,10 X20,12,21,11 X21,3,22,2 X12,4,13,3 X13,23,14,22 X4,24,5,23 X5,15,6,14 X24,16,25,15 X25,7,26,6 X16,8,17,7 X17,27,18,26 X8,28,9,27 X9,19,10,18 X28,20,1,19 |
Gauss code | {-1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14} |
Dowker-Thistlethwaite code | 10 -12 14 -16 18 -20 22 -24 26 -28 2 -4 6 -8 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 56}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(7,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ | |||||||||
29 | 1 | -1 | ||||||||||||||||||
27 | 1 | -1 | ||||||||||||||||||
25 | 1 | 1 | 0 | |||||||||||||||||
23 | 1 | 1 | 0 | |||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||
19 | 1 | 1 | 0 | |||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||
13 | 1 | 1 | ||||||||||||||||||
11 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[7, 3]] |
Out[2]= | 14 |
In[3]:= | PD[TorusKnot[7, 3]] |
Out[3]= | PD[X[1, 11, 2, 10], X[20, 12, 21, 11], X[21, 3, 22, 2],X[12, 4, 13, 3], X[13, 23, 14, 22], X[4, 24, 5, 23], X[5, 15, 6, 14], X[24, 16, 25, 15], X[25, 7, 26, 6], X[16, 8, 17, 7], X[17, 27, 18, 26], X[8, 28, 9, 27], X[9, 19, 10, 18],X[28, 20, 1, 19]] |
In[4]:= | GaussCode[TorusKnot[7, 3]] |
Out[4]= | GaussCode[-1, 3, 4, -6, -7, 9, 10, -12, -13, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -2, -3, 5, 6, -8, -9, 11, 12, -14] |
In[5]:= | BR[TorusKnot[7, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[7, 3]][t] |
Out[6]= | -6 -5 -3 -2 2 3 5 6 1 + t - t + t - t - t + t - t + t |
In[7]:= | Conway[TorusKnot[7, 3]][z] |
Out[7]= | 2 4 6 8 10 12 1 + 16 z + 60 z + 78 z + 44 z + 11 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[7, 3]], KnotSignature[TorusKnot[7, 3]]} |
Out[9]= | {1, 8} |
In[10]:= | J=Jones[TorusKnot[7, 3]][q] |
Out[10]= | 6 8 14 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[7, 3]][q] |
Out[12]= | 22 24 26 28 30 32 34 38 40 42 |
In[13]:= | Kauffman[TorusKnot[7, 3]][a, z] |
Out[13]= | 2 2 2 3 35 16 12 16 z 16 z 10 z 76 z 66 z 60 z 60 z |
In[14]:= | {Vassiliev[2][TorusKnot[7, 3]], Vassiliev[3][TorusKnot[7, 3]]} |
Out[14]= | {0, 56} |
In[15]:= | Kh[TorusKnot[7, 3]][q, t] |
Out[15]= | 11 13 15 2 19 3 17 4 19 4 21 5 23 5 |