T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- Script generated - do not edit! -->


<!-- $Faileddn.matuwo . ca
<!-- -->
--------
caidmK$Faidaileds$idpa$Faidnt$ileddtres$Failed$Failedadd$Failedm;" | X<sub>314$Failed''[[GausCeGss cod$Failede=$Faile$Failed1, 2, -3, 1}
'$Failed (Dowk-ThistlaeCes|Dowr - T2aepa$Faeal Invarnts|name=T(3,2)}}


<span id="top"></span>
===[[Finite Type (Vassilievvnid===$F$Failedyle="padding-left: 1em;"$Failed)

{{Knot Navigation Links|prev=T(7,3).jpg|next=T(15,2).jpg}}

Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/14,15,-3,-5,-7,10,11,12,-15,-2,-4,7,8,9,-12,-14,-1,4,5,6,-9,-11,-13,1,2,3,-6,-8,-10,13/goTop.html T(5,4)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!

Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/5.4.html T(5,4)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!

===Knot presentations===

{|
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|style="padding-left: 1em;" | X<sub>17,25,18,24</sub> X<sub>10,26,11,25</sub> X<sub>3,27,4,26</sub> X<sub>11,19,12,18</sub> X<sub>4,20,5,19</sub> X<sub>27,21,28,20</sub> X<sub>5,13,6,12</sub> X<sub>28,14,29,13</sub> X<sub>21,15,22,14</sub> X<sub>29,7,30,6</sub> X<sub>22,8,23,7</sub> X<sub>15,9,16,8</sub> X<sub>23,1,24,30</sub> X<sub>16,2,17,1</sub> X<sub>9,3,10,2</sub>
|-
|'''[[Gauss Codes|Gauss code]]'''
|style="padding-left: 1em;" | {14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13}
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|style="padding-left: 1em;" | 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6
|}
|}


===Polynomial invariants===
[[KhovHomolo$Failedeffi oven$Failed> are shoFaile</math>, over ternationmathmath>). The squares th < failedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><$ilednenter>

<td wid$Failedled$Failed>j</td><td>&nbsp;</td$Failed/tr>
{{Polynomial Invariants|name=T(5,4)}}
</ta Failed

-------------
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===
$Failedlednte<td>9</td>$Failed><t$Failedo$Failedo$Fail$Failediled>$Failed&$Failedd$Failed>$Faed > $Fa$Fled style="colo$Failededd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Faidp $Faidd$Faile$Failailed > --(--(-$Failed------)) tdtd><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$F$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$Faido$Failed>$Failedea$Failed<$Failedd$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failednbsp ((($Failed & ) nbsp; ) & )/now$Faile t
{| style="margin-left: 1em;"
-$Failed+ borde $Failed < $Fa
|-
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failepadd$Failedpr</td><t$Failedadding:$Failedailed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failedn$Failediki></pre></td><td><p$Failedding: 0em"><nowik$Failed/$Failed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Fapaddg: 0em"><nowiki>S$Faileds$Failedq$Failed<$Failedl$Failedr$Failedk$Failedl$Failedi$Failedt$Failedp$Failedt$Failedi$FailedK$Failedt$Failedorder: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nb$Failedyle="color: blackpadding:0<wiki > 8 2 + 2 q $Failedi$Failedr$Failed $Failedpcolor: red; border: 0px; padding: 0emn$Failed]$Failedd$Failedd$Failedd$Failed 3
|'''V<sub>2</sub> and V<sub>3</sub>'''
-8 z-$Failed
|style="padding-left: 1em;" | {0, 50})
2 5 3 4 2
|}
a a a a a</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr>
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr>
<center><table border=1>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3
<tr align=center>
q + q + q t + q t</nowiki></pre></td></tr>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>27</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>21</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>13</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>11</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>15</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26],
X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20],
X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14],
X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30],
X[16, 2, 17, 1], X[9, 3, 10, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12,
-14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[5, 4]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[5, 4]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -2 2 5 6
-1 + t - t + t + t - t + t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[5, 4]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
1 + 15 z + 56 z + 77 z + 44 z + 11 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[5, 4]], KnotSignature[TorusKnot[5, 4]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 8}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[5, 4]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 11 13
q + q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
Include[ColouredJonesM.mhtml]
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[5, 4]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 22 24 26 28 30 32 34 36 38 40
q + q + 2 q + 2 q + 3 q + 2 q + q - q - 2 q - 3 q -
42 44 46 48 50 52
3 q - 2 q - q + q + q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[5, 4]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-18 9 21 14 z 8 z 28 z 21 z z 22 z
a + --- + --- + --- - --- - --- - ---- - ---- - --- - ----- -
16 14 12 19 17 15 13 18 16
a a a a a a a a a
2 2 3 3 3 4 4 4
91 z 70 z 14 z 84 z 70 z 21 z 154 z 133 z
----- - ----- + ----- + ----- + ----- + ----- + ------ + ------ -
14 12 17 15 13 16 14 12
a a a a a a a a
5 5 5 6 6 6 7 7 7
7 z 91 z 84 z 8 z 129 z 121 z z 46 z 45 z
---- - ----- - ----- - ---- - ------ - ------ + --- + ----- + ----- +
17 15 13 16 14 12 17 15 13
a a a a a a a a a
8 8 8 9 9 10 10 11 11
z 56 z 55 z 11 z 11 z 12 z 12 z z z
--- + ----- + ----- - ----- - ----- - ------ - ------ + --- + --- +
16 14 12 15 13 14 12 15 13
a a a a a a a a a
12 12
z z
--- + ---
14 12
a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[5, 4]], Vassiliev[3][TorusKnot[5, 4]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 50}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[5, 4]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 13 15 2 19 3 17 4 19 4 21 5 23 5
q + q + q t + q t + q t + q t + q t + q t +
19 6 21 6 23 7 25 7 23 8 27 9
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

Revision as of 18:35, 26 August 2005


[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]]

T(7,3)

[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]]

T(15,2)

Visit T(5,4)'s page at Knotilus!

Visit T(5,4)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
Gauss code {14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13}
Dowker-Thistlethwaite code 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,4)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,4)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 50})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789χ
27         1-1
25       1  -1
23     1 11 -1
21     11   0
19   11 1   1
17    1     1
15  1       1
131         1
111         1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Include[ColouredJonesM.mhtml]

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 19, 2005, 13:11:25)...
In[2]:=
Crossings[TorusKnot[5, 4]]
Out[2]=   
15
In[3]:=
PD[TorusKnot[5, 4]]
Out[3]=   
PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], 
 X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], 

 X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], 

 X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30], 

X[16, 2, 17, 1], X[9, 3, 10, 2]]
In[4]:=
GaussCode[TorusKnot[5, 4]]
Out[4]=   
GaussCode[14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, 
  -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13]
In[5]:=
BR[TorusKnot[5, 4]]
Out[5]=   
BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]
In[6]:=
alex = Alexander[TorusKnot[5, 4]][t]
Out[6]=   
      -6    -5    -2    2    5    6
-1 + t   - t   + t   + t  - t  + t
In[7]:=
Conway[TorusKnot[5, 4]][z]
Out[7]=   
        2       4       6       8       10    12
1 + 15 z  + 56 z  + 77 z  + 44 z  + 11 z   + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=   
{}
In[9]:=
{KnotDet[TorusKnot[5, 4]], KnotSignature[TorusKnot[5, 4]]}
Out[9]=   
{5, 8}
In[10]:=
J=Jones[TorusKnot[5, 4]][q]
Out[10]=   
 6    8    10    11    13
q  + q  + q   - q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=   
{}
In[12]:=
A2Invariant[TorusKnot[5, 4]][q]
Out[12]=   
 22    24      26      28      30      32    34    36      38      40

q + q + 2 q + 2 q + 3 q + 2 q + q - q - 2 q - 3 q -

    42      44    46    48    50    52
3 q - 2 q - q + q + q + q
In[13]:=
Kauffman[TorusKnot[5, 4]][a, z]
Out[13]=   
                                                    2        2
-18    9    21    14     z    8 z   28 z   21 z   z     22 z

a + --- + --- + --- - --- - --- - ---- - ---- - --- - ----- -

       16    14    12    19    17    15     13     18     16
      a     a     a     a     a     a      a      a      a

     2       2       3       3       3       4        4        4
 91 z    70 z    14 z    84 z    70 z    21 z    154 z    133 z
 ----- - ----- + ----- + ----- + ----- + ----- + ------ + ------ - 
   14      12      17      15      13      16      14       12
  a       a       a       a       a       a       a        a

    5       5       5      6        6        6    7        7       7
 7 z    91 z    84 z    8 z    129 z    121 z    z     46 z    45 z
 ---- - ----- - ----- - ---- - ------ - ------ + --- + ----- + ----- + 
  17      15      13     16      14       12      17     15      13
 a       a       a      a       a        a       a      a       a

  8        8       8       9       9       10       10    11    11
 z     56 z    55 z    11 z    11 z    12 z     12 z     z     z
 --- + ----- + ----- - ----- - ----- - ------ - ------ + --- + --- + 
  16     14      12      15      13      14       12      15    13
 a      a       a       a       a       a        a       a     a

  12    12
 z     z
 --- + ---
  14    12
a a
In[14]:=
{Vassiliev[2][TorusKnot[5, 4]], Vassiliev[3][TorusKnot[5, 4]]}
Out[14]=   
{0, 50}
In[15]:=
Kh[TorusKnot[5, 4]][q, t]
Out[15]=   
 11    13    15  2    19  3    17  4    19  4    21  5    23  5

q + q + q t + q t + q t + q t + q t + q t +

  19  6    21  6    23  7    25  7    23  8    27  9
q t + q t + q t + q t + q t + q t