T(5,4): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
<!-- Script generated - do not edit! --> |
<!-- Script generated - do not edit! --> |
||
<!-- |
<!-- --> |
||
-------- |
|||
caidmK$Faidaileds$idpa$Faidnt$ileddtres$Failed$Failedadd$Failedm;" | X<sub>314$Failed''[[GausCeGss cod$Failede=$Faile$Failed1, 2, -3, 1} |
|||
'$Failed (Dowk-ThistlaeCes|Dowr - T2aepa$Faeal Invarnts|name=T(3,2)}} |
|||
<span id="top"></span> |
|||
===[[Finite Type (Vassilievvnid===$F$Failedyle="padding-left: 1em;"$Failed) |
|||
{{Knot Navigation Links|prev=T(7,3).jpg|next=T(15,2).jpg}} |
|||
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/14,15,-3,-5,-7,10,11,12,-15,-2,-4,7,8,9,-12,-14,-1,4,5,6,-9,-11,-13,1,2,3,-6,-8,-10,13/goTop.html T(5,4)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/5.4.html T(5,4)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>17,25,18,24</sub> X<sub>10,26,11,25</sub> X<sub>3,27,4,26</sub> X<sub>11,19,12,18</sub> X<sub>4,20,5,19</sub> X<sub>27,21,28,20</sub> X<sub>5,13,6,12</sub> X<sub>28,14,29,13</sub> X<sub>21,15,22,14</sub> X<sub>29,7,30,6</sub> X<sub>22,8,23,7</sub> X<sub>15,9,16,8</sub> X<sub>23,1,24,30</sub> X<sub>16,2,17,1</sub> X<sub>9,3,10,2</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | {14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13} |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6 |
|||
|} |
|} |
||
===Polynomial invariants=== |
|||
[[KhovHomolo$Failedeffi oven$Failed> are shoFaile</math>, over ternationmathmath>). The squares th < failedYe2</math>, where <math>s=</math>22 signHLRed$Fail the<center><$ilednenter> |
|||
<td wid$Failedled$Failed>j</td><td> </td$Failed/tr> |
|||
{{Polynomial Invariants|name=T(5,4)}} |
|||
</ta Failed |
|||
------------- |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
$Failedlednte<td>9</td>$Failed><t$Failedo$Failedo$Fail$Failediled>$Failed&$Failedd$Failed>$Faed > $Fa$Fled style="colo$Failededd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Faidp $Faidd$Faile$Failailed > --(--(-$Failed------)) tdtd><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$F$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td><Failedolor:bl$Faidn[5]:=</nowiki></$Faedrd$Faido$Failed>$Failedea$Failed<$Failedd$Failed $Failedn0rpadding:0<$Failed3$Failedr$Failednbsp ((($Failed & ) nbsp; ) & )/now$Faile t |
|||
{| style="margin-left: 1em;" |
|||
-$Failed+ borde $Failed < $Fa |
|||
|- |
|||
$Failededo$Failed<$Failede$Failed $Failedd$Failed>$Failede$Failed $Failede$Failepadd$Failedpr</td><t$Failedadding:$Failedailed=$Failed/$Faileda$Failede$Failedm$Failed&$Failedr$Failed<$Failed>$Failed<$FailedK$Failedt$Failede$Failed $Failedn$Failediki></pre></td><td><p$Failedding: 0em"><nowik$Failed/$Failed>$Failedepadding:0<$Failed<$Failed:$Failedi$Failed"pai$Failed;$Failedi$Failed>$Fapaddg: 0em"><nowiki>S$Faileds$Failedq$Failed<$Failedl$Failedr$Failedk$Failedl$Failedi$Failedt$Failedp$Failedt$Failedi$FailedK$Failedt$Failedorder: 0px; padding: 0em"><nowiki>Out[12]= &nb$Failedyle="color: blackpadding:0<wiki > 8 2 + 2 q $Failedi$Failedr$Failed $Failedpcolor: red; border: 0px; padding: 0emn$Failed]$Failedd$Failedd$Failedd$Failed 3 |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
-8 z-$Failed |
|||
|style="padding-left: 1em;" | {0, 50}) |
|||
2 5 3 4 2 |
|||
|} |
|||
a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr> |
|||
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr> |
|||
<center><table border=1> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3 |
|||
<tr align=center> |
|||
q + q + q t + q t</nowiki></pre></td></tr> |
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>27</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td bgcolor=red>1</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td bgcolor=red>1</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[5, 4]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>15</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[5, 4]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], |
|||
X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], |
|||
X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], |
|||
X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30], |
|||
X[16, 2, 17, 1], X[9, 3, 10, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[5, 4]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, |
|||
-14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[5, 4]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[5, 4]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -5 -2 2 5 6 |
|||
-1 + t - t + t + t - t + t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[5, 4]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
|||
1 + 15 z + 56 z + 77 z + 44 z + 11 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[5, 4]], KnotSignature[TorusKnot[5, 4]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 8}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[5, 4]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 11 13 |
|||
q + q + q - q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
Include[ColouredJonesM.mhtml] |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[5, 4]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 22 24 26 28 30 32 34 36 38 40 |
|||
q + q + 2 q + 2 q + 3 q + 2 q + q - q - 2 q - 3 q - |
|||
42 44 46 48 50 52 |
|||
3 q - 2 q - q + q + q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[5, 4]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-18 9 21 14 z 8 z 28 z 21 z z 22 z |
|||
a + --- + --- + --- - --- - --- - ---- - ---- - --- - ----- - |
|||
16 14 12 19 17 15 13 18 16 |
|||
a a a a a a a a a |
|||
2 2 3 3 3 4 4 4 |
|||
91 z 70 z 14 z 84 z 70 z 21 z 154 z 133 z |
|||
----- - ----- + ----- + ----- + ----- + ----- + ------ + ------ - |
|||
14 12 17 15 13 16 14 12 |
|||
a a a a a a a a |
|||
5 5 5 6 6 6 7 7 7 |
|||
7 z 91 z 84 z 8 z 129 z 121 z z 46 z 45 z |
|||
---- - ----- - ----- - ---- - ------ - ------ + --- + ----- + ----- + |
|||
17 15 13 16 14 12 17 15 13 |
|||
a a a a a a a a a |
|||
8 8 8 9 9 10 10 11 11 |
|||
z 56 z 55 z 11 z 11 z 12 z 12 z z z |
|||
--- + ----- + ----- - ----- - ----- - ------ - ------ + --- + --- + |
|||
16 14 12 15 13 14 12 15 13 |
|||
a a a a a a a a a |
|||
12 12 |
|||
z z |
|||
--- + --- |
|||
14 12 |
|||
a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[5, 4]], Vassiliev[3][TorusKnot[5, 4]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 50}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[5, 4]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 11 13 15 2 19 3 17 4 19 4 21 5 23 5 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
|||
19 6 21 6 23 7 25 7 23 8 27 9 |
|||
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr> |
|||
</table> |
</table> |
Revision as of 18:35, 26 August 2005
[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]] |
[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]] |
Visit T(5,4)'s page at Knotilus!
Visit T(5,4)'s page at the original Knot Atlas!
Knot presentations
Planar diagram presentation | X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2 |
Gauss code | {14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13} |
Dowker-Thistlethwaite code | 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6 |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(5,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, 8 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3 | {0, 50}) |
Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | χ | |||||||||
27 | 1 | -1 | ||||||||||||||||||
25 | 1 | -1 | ||||||||||||||||||
23 | 1 | 1 | 1 | -1 | ||||||||||||||||
21 | 1 | 1 | 0 | |||||||||||||||||
19 | 1 | 1 | 1 | 1 | ||||||||||||||||
17 | 1 | 1 | ||||||||||||||||||
15 | 1 | 1 | ||||||||||||||||||
13 | 1 | 1 | ||||||||||||||||||
11 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Include[ColouredJonesM.mhtml]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 19, 2005, 13:11:25)... | |
In[2]:= | Crossings[TorusKnot[5, 4]] |
Out[2]= | 15 |
In[3]:= | PD[TorusKnot[5, 4]] |
Out[3]= | PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26],X[11, 19, 12, 18], X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13], X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8], X[23, 1, 24, 30],X[16, 2, 17, 1], X[9, 3, 10, 2]] |
In[4]:= | GaussCode[TorusKnot[5, 4]] |
Out[4]= | GaussCode[14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13] |
In[5]:= | BR[TorusKnot[5, 4]] |
Out[5]= | BR[4, {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3}] |
In[6]:= | alex = Alexander[TorusKnot[5, 4]][t] |
Out[6]= | -6 -5 -2 2 5 6 -1 + t - t + t + t - t + t |
In[7]:= | Conway[TorusKnot[5, 4]][z] |
Out[7]= | 2 4 6 8 10 12 1 + 15 z + 56 z + 77 z + 44 z + 11 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[5, 4]], KnotSignature[TorusKnot[5, 4]]} |
Out[9]= | {5, 8} |
In[10]:= | J=Jones[TorusKnot[5, 4]][q] |
Out[10]= | 6 8 10 11 13 q + q + q - q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[5, 4]][q] |
Out[12]= | 22 24 26 28 30 32 34 36 38 40 |
In[13]:= | Kauffman[TorusKnot[5, 4]][a, z] |
Out[13]= | 2 2-18 9 21 14 z 8 z 28 z 21 z z 22 z |
In[14]:= | {Vassiliev[2][TorusKnot[5, 4]], Vassiliev[3][TorusKnot[5, 4]]} |
Out[14]= | {0, 50} |
In[15]:= | Kh[TorusKnot[5, 4]][q, t] |
Out[15]= | 11 13 15 2 19 3 17 4 19 4 21 5 23 5 |