The HOMFLY-PT Polynomial: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Manual TOC Sidebar}} |
{{Manual TOC Sidebar}} |
||
The ''HOMFLY-PT polynomial'' <math>H(L)(a,z)</math> (see {{ref|HOMFLY}} and {{ref|PT}} of a knot or link <math>L</math> is defined by the skein relation |
The ''HOMFLY-PT polynomial'' <math>H(L)(a,z)</math> (see {{ref|HOMFLY}} and {{ref|PT}}) of a knot or link <math>L</math> is defined by the skein relation |
||
<center><math> |
<center><math> |
||
| Line 42: | Line 42: | ||
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at <math>a=q^{-1}</math> and <math>z=q^{1/2}-q^{-1/2}</math> and to the Conway polynomial at <math>a=1</math>. Indeed, |
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at <math>a=q^{-1}</math> and <math>z=q^{1/2}-q^{-1/2}</math> and to the Conway polynomial at <math>a=1</math>. Indeed, |
||
<!--$$ |
<!--$$Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n=6}} |
|||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>{Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]}</nowiki></pre> |
|||
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki> -6 -5 -4 2 2 2 2 -6 -5 -4 2 2 2 2 |
|||
{2 + q - q + q - -- + -- - - - q + q , 2 + q - q + q - -- + -- - - - q + q } |
|||
3 2 q 3 2 q |
|||
q q q q</nowiki></pre> |
|||
{{InOut3}} |
|||
<!--END--> |
|||
<!--$$Jones[K][q]$$--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
||
{{InOut1|n=6}} |
{{InOut1|n=6}} |
||
Revision as of 06:00, 27 August 2005
The HOMFLY-PT polynomial (see [HOMFLY] and [PT]) of a knot or link is defined by the skein relation
and by the initial condition =1.
KnotTheory` knows about the HOMFLY-PT polynomial:
(For In[1] see Setup)
In[2]:= ?HOMFLYPT
HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z. |
In[3]:= HOMFLYPT::about
The HOMFLYPT program was written by Scott Morrison. |
Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:
| In[4]:= |
K = Knot[8, 1]; |
| In[5]:= |
HOMFLYPT[Knot[8, 1]][a, z] |
| Out[5]= | -2 4 6 2 2 2 4 2 a - a + a - z - a z - a z |
It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,
| In[6]:= |
{Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]}
|
| Out[6]= | -6 -5 -4 2 2 2 2 -6 -5 -4 2 2 2 2
{2 + q - q + q - -- + -- - - - q + q , 2 + q - q + q - -- + -- - - - q + q }
3 2 q 3 2 q
q q q q
|
| In[6]:= |
{Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]], Jones[K][q]}
|
| Out[6]= | -6 -5 -4 2 2 2 2 -6 -5 -4 2 2 2 2
{2 + q - q + q - -- + -- - - - q + q , 2 + q - q + q - -- + -- - - - q + q }
3 2 q 3 2 q
q q q q
|
| In[7]:= |
{HOMFLYPT[K][1, z], Conway[K][z]}
|
| Out[7]= | 2 2
{1 - 3 z , 1 - 3 z }
|
In our parametirzation of the link invariant, it satisfies
where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:
| In[8]:= |
L = Link[5, Alternating, 1]; |
| In[9]:= |
Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
A2Invariant[L][q]
}]
|
| Out[9]= | -12 -8 -6 2 -2 2 4 6 -12 -8 -6 2 -2 2 4 6
{2 - q + q + q + -- + q + q + q + q , 2 - q + q + q + -- + q + q + q + q }
4 4
q q
|
[HOMFLY] ^ J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.
[PT] ^ J. Przytycki and P. Traczyk, , Proc. Amer. Math. Soc. 100 (1987) 744-748.