9 24: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
Line 1: Line 1:
<!-- -->
{{Template:Basic Knot Invariants|name=9_24}}

<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>

<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=24|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,6,-5,7,-8,3,-7,4,-6,5/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}
{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>3</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 24]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 24]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16],
X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12],
X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 24]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 24]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 24]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 10 2 3
13 - t + -- - -- - 10 t + 5 t - t
2 t
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 24]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 + z - z - z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85],
Knot[11, NonAlternating, 164]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{45, 0}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 24]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 4 7 7 2 3 4
8 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q
4 3 2 q
q q q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 24]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 24]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -14 -10 3 2 -4 2 2 4 8 10
-2 - q - q - q + -- + -- + q + -- + q - 2 q + q - q +
8 6 2
q q q
12
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 24]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 4 z 2 z 3 5 2
-3 - a - 5 a - 2 a + -- + --- + 2 a z + 3 a z + 2 a z + 9 z -
3 a
a
2 2 3 3
z 2 z 2 2 4 2 4 z 3 z 3 3 3
-- + ---- + 10 a z + 4 a z - ---- - ---- + a z - 3 a z -
4 2 3 a
a a a
4 4 5 5
5 3 4 z 5 z 2 4 4 4 3 z z
3 a z - 11 z + -- - ---- - 10 a z - 5 a z + ---- - -- -
4 2 3 a
a a a
6 7
5 3 5 5 5 6 4 z 2 6 4 6 3 z
7 a z - 2 a z + a z + 5 z + ---- + 3 a z + 2 a z + ---- +
2 a
a
7 3 7 8 2 8
5 a z + 2 a z + z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 24]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 1 1 1 3 1 4 3
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q t q t q t q t q t q t q t
3 4 3 3 2 5 2 5 3 7 3
---- + --- + 3 q t + 4 q t + 2 q t + 3 q t + q t + 2 q t +
3 q t
q t
9 4
q t</nowiki></pre></td></tr>
</table>

Revision as of 20:44, 27 August 2005


9 23.gif

9_23

9 25.gif

9_25

9 24.gif Visit 9 24's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 24's page at Knotilus!

Visit 9 24's page at the original Knot Atlas!

9 24 Quick Notes


9 24 Further Notes and Views

Knot presentations

Planar diagram presentation X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283
Gauss code -1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5
Dowker-Thistlethwaite code 4 8 14 2 16 18 6 12 10
Conway Notation [3,21,2+]

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 10.8337
A-Polynomial See Data:9 24/A-polynomial

[edit Notes for 9 24's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 9 24's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 45, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

Vassiliev invariants

V2 and V3: (1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        2 -2
5       31 2
3      42  -2
1     43   1
-1    45    1
-3   33     0
-5  14      3
-7 13       -2
-9 1        1
-111         -1

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 24]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 24]]
Out[3]=  
PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16], 
 X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12], 

X[13, 6, 14, 7], X[7, 2, 8, 3]]
In[4]:=
GaussCode[Knot[9, 24]]
Out[4]=  
GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]
In[5]:=
BR[Knot[9, 24]]
Out[5]=  
BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}]
In[6]:=
alex = Alexander[Knot[9, 24]][t]
Out[6]=  
      -3   5    10             2    3

13 - t + -- - -- - 10 t + 5 t - t

           2   t
t
In[7]:=
Conway[Knot[9, 24]][z]
Out[7]=  
     2    4    6
1 + z  - z  - z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
  Knot[11, NonAlternating, 164]}
In[9]:=
{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}
Out[9]=  
{45, 0}
In[10]:=
J=Jones[Knot[9, 24]][q]
Out[10]=  
     -5   2    4    7    7            2      3    4

8 - q + -- - -- + -- - - - 7 q + 5 q - 3 q + q

          4    3    2   q
q q q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 24]}
In[12]:=
A2Invariant[Knot[9, 24]][q]
Out[12]=  
      -16    -14    -10   3    2     -4   2     2      4    8    10

-2 - q - q - q + -- + -- + q + -- + q - 2 q + q - q +

                          8    6          2
                         q    q          q

  12
q
In[13]:=
Kauffman[Knot[9, 24]][a, z]
Out[13]=  
      -2      2      4   z    2 z              3        5        2

-3 - a - 5 a - 2 a + -- + --- + 2 a z + 3 a z + 2 a z + 9 z -

                         3    a
                        a

  2      2                           3      3
 z    2 z        2  2      4  2   4 z    3 z       3      3  3
 -- + ---- + 10 a  z  + 4 a  z  - ---- - ---- + a z  - 3 a  z  - 
  4     2                           3     a
 a     a                           a

                    4      4                           5    5
    5  3       4   z    5 z        2  4      4  4   3 z    z
 3 a  z  - 11 z  + -- - ---- - 10 a  z  - 5 a  z  + ---- - -- - 
                    4     2                           3    a
                   a     a                           a

                                      6                          7
      5      3  5    5  5      6   4 z       2  6      4  6   3 z
 7 a z  - 2 a  z  + a  z  + 5 z  + ---- + 3 a  z  + 2 a  z  + ---- + 
                                     2                         a
                                    a

      7      3  7    8    2  8
5 a z + 2 a z + z + a z
In[14]:=
{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}
Out[14]=  
{0, -2}
In[15]:=
Kh[Knot[9, 24]][q, t]
Out[15]=  
5           1        1       1       3       1       4       3

- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + q 11 5 9 4 7 4 7 3 5 3 5 2 3 2

         q   t    q  t    q  t    q  t    q  t    q  t    q  t

  3      4               3        3  2      5  2    5  3      7  3
 ---- + --- + 3 q t + 4 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  + 
  3     q t
 q  t

  9  4
q t