9 24: Difference between revisions
 (Resetting knot page to basic template.)  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--  -->  | 
|||
{{Template:Basic Knot Invariants|name=9_24}}  | 
  |||
<!-- provide an anchor so we can return to the top of the page -->  | 
|||
<span id="top"></span>  | 
|||
<!-- this relies on transclusion for next and previous links -->  | 
|||
{{Knot Navigation Links|ext=gif}}  | 
|||
{| align=left  | 
|||
|- valign=top  | 
|||
|[[Image:{{PAGENAME}}.gif]]  | 
|||
|{{Rolfsen Knot Site Links|n=9|k=24|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,1,-3,8,-9,2,-4,6,-5,7,-8,3,-7,4,-6,5/goTop.html}}  | 
|||
|{{:{{PAGENAME}} Quick Notes}}  | 
|||
|}  | 
|||
<br style="clear:both" />  | 
|||
{{:{{PAGENAME}} Further Notes and Views}}  | 
|||
{{Knot Presentations}}  | 
|||
{{3D Invariants}}  | 
|||
{{4D Invariants}}  | 
|||
{{Polynomial Invariants}}  | 
|||
{{Vassiliev Invariants}}  | 
|||
===[[Khovanov Homology]]===  | 
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.  | 
|||
<center><table border=1>  | 
|||
<tr align=center>  | 
|||
<td width=14.2857%><table cellpadding=0 cellspacing=0>  | 
|||
 <tr><td>\</td><td> </td><td>r</td></tr>  | 
|||
<tr><td> </td><td> \ </td><td> </td></tr>  | 
|||
<tr><td>j</td><td> </td><td>\</td></tr>  | 
|||
</table></td>  | 
|||
 <td width=7.14286%>-5</td  ><td width=7.14286%>-4</td  ><td width=7.14286%>-3</td  ><td width=7.14286%>-2</td  ><td width=7.14286%>-1</td  ><td width=7.14286%>0</td  ><td width=7.14286%>1</td  ><td width=7.14286%>2</td  ><td width=7.14286%>3</td  ><td width=7.14286%>4</td  ><td width=14.2857%>χ</td></tr>  | 
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr>  | 
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr>  | 
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>2</td></tr>  | 
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-2</td></tr>  | 
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr>  | 
|||
<tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr>  | 
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr>  | 
|||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr>  | 
|||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr>  | 
|||
</table></center>  | 
|||
{{Computer Talk Header}}  | 
|||
<table>  | 
|||
<tr valign=top>  | 
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td>  | 
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
|||
</tr>  | 
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 24]]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 24]]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16],   | 
|||
  X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12],   | 
|||
  X[13, 6, 14, 7], X[7, 2, 8, 3]]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 24]]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[9, 24]]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 24]][t]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -3   5    10             2    3  | 
|||
13 - t   + -- - -- - 10 t + 5 t  - t  | 
|||
            2   t  | 
|||
           t</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 24]][z]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     2    4    6  | 
|||
1 + z  - z  - z</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85],   | 
|||
  Knot[11, NonAlternating, 164]}</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]}</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{45, 0}</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[9, 24]][q]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -5   2    4    7    7            2      3    4  | 
|||
8 - q   + -- - -- + -- - - - 7 q + 5 q  - 3 q  + q  | 
|||
           4    3    2   q  | 
|||
          q    q    q</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 24]}</nowiki></pre></td></tr>  | 
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 24]][q]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -16    -14    -10   3    2     -4   2     2      4    8    10  | 
|||
-2 - q    - q    - q    + -- + -- + q   + -- + q  - 2 q  + q  - q   +   | 
|||
                           8    6          2  | 
|||
                          q    q          q  | 
|||
   12  | 
|||
  q</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 24]][a, z]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -2      2      4   z    2 z              3        5        2  | 
|||
-3 - a   - 5 a  - 2 a  + -- + --- + 2 a z + 3 a  z + 2 a  z + 9 z  -   | 
|||
                          3    a  | 
|||
                         a  | 
|||
   2      2                           3      3  | 
|||
  z    2 z        2  2      4  2   4 z    3 z       3      3  3  | 
|||
  -- + ---- + 10 a  z  + 4 a  z  - ---- - ---- + a z  - 3 a  z  -   | 
|||
   4     2                           3     a  | 
|||
  a     a                           a  | 
|||
                     4      4                           5    5  | 
|||
     5  3       4   z    5 z        2  4      4  4   3 z    z  | 
|||
  3 a  z  - 11 z  + -- - ---- - 10 a  z  - 5 a  z  + ---- - -- -   | 
|||
                     4     2                           3    a  | 
|||
                    a     a                           a  | 
|||
                                       6                          7  | 
|||
       5      3  5    5  5      6   4 z       2  6      4  6   3 z  | 
|||
  7 a z  - 2 a  z  + a  z  + 5 z  + ---- + 3 a  z  + 2 a  z  + ---- +   | 
|||
                                      2                         a  | 
|||
                                     a  | 
|||
       7      3  7    8    2  8  | 
|||
  5 a z  + 2 a  z  + z  + a  z</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]}</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 24]][q, t]</nowiki></pre></td></tr>  | 
|||
<tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5           1        1       1       3       1       4       3  | 
|||
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +   | 
|||
q          11  5    9  4    7  4    7  3    5  3    5  2    3  2  | 
|||
          q   t    q  t    q  t    q  t    q  t    q  t    q  t  | 
|||
   3      4               3        3  2      5  2    5  3      7  3  | 
|||
  ---- + --- + 3 q t + 4 q  t + 2 q  t  + 3 q  t  + q  t  + 2 q  t  +   | 
|||
   3     q t  | 
|||
  q  t  | 
|||
   9  4  | 
|||
  q  t</nowiki></pre></td></tr>  | 
|||
</table>  | 
|||
Revision as of 20:44, 27 August 2005
| 
 | 
 | 
 
 | 
Visit 9 24's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!)
 Visit 9 24's page at Knotilus! Visit 9 24's page at the original Knot Atlas!  | 
9 24 Quick Notes | 
Knot presentations
| Planar diagram presentation | X1425 X3849 X5,14,6,15 X9,17,10,16 X11,1,12,18 X17,11,18,10 X15,13,16,12 X13,6,14,7 X7283 | 
| Gauss code | -1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5 | 
| Dowker-Thistlethwaite code | 4 8 14 2 16 18 6 12 10 | 
| Conway Notation | [3,21,2+] | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["9 24"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 45, 0 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
Vassiliev invariants
| V2 and V3: | (1, -2) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 9 24. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
  | 
 -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
| 9 | 1 | 1 | ||||||||||||||||||
| 7 | 2 | -2 | ||||||||||||||||||
| 5 | 3 | 1 | 2 | |||||||||||||||||
| 3 | 4 | 2 | -2 | |||||||||||||||||
| 1 | 4 | 3 | 1 | |||||||||||||||||
| -1 | 4 | 5 | 1 | |||||||||||||||||
| -3 | 3 | 3 | 0 | |||||||||||||||||
| -5 | 1 | 4 | 3 | |||||||||||||||||
| -7 | 1 | 3 | -2 | |||||||||||||||||
| -9 | 1 | 1 | ||||||||||||||||||
| -11 | 1 | -1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
In[1]:=  | 
<< KnotTheory`  | 
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...  | |
In[2]:=  | Crossings[Knot[9, 24]]  | 
Out[2]=  | 9  | 
In[3]:=  | PD[Knot[9, 24]]  | 
Out[3]=  | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[5, 14, 6, 15], X[9, 17, 10, 16],X[11, 1, 12, 18], X[17, 11, 18, 10], X[15, 13, 16, 12],X[13, 6, 14, 7], X[7, 2, 8, 3]]  | 
In[4]:=  | GaussCode[Knot[9, 24]]  | 
Out[4]=  | GaussCode[-1, 9, -2, 1, -3, 8, -9, 2, -4, 6, -5, 7, -8, 3, -7, 4, -6, 5]  | 
In[5]:=  | BR[Knot[9, 24]]  | 
Out[5]=  | BR[4, {-1, -1, 2, -1, -3, 2, 2, 2, -3}] | 
In[6]:=  | alex = Alexander[Knot[9, 24]][t]  | 
Out[6]=  | -3 5 10 2 3  | 
In[7]:=  | Conway[Knot[9, 24]][z]  | 
Out[7]=  | 2 4 6 1 + z - z - z  | 
In[8]:=  | Select[AllKnots[], (alex === Alexander[#][t])&]  | 
Out[8]=  | {Knot[8, 18], Knot[9, 24], Knot[11, NonAlternating, 85], 
  Knot[11, NonAlternating, 164]} | 
In[9]:=  | {KnotDet[Knot[9, 24]], KnotSignature[Knot[9, 24]]} | 
Out[9]=  | {45, 0} | 
In[10]:=  | J=Jones[Knot[9, 24]][q]  | 
Out[10]=  | -5 2 4 7 7 2 3 4  | 
In[11]:=  | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]  | 
Out[11]=  | {Knot[9, 24]} | 
In[12]:=  | A2Invariant[Knot[9, 24]][q]  | 
Out[12]=  | -16 -14 -10 3 2 -4 2 2 4 8 10  | 
In[13]:=  | Kauffman[Knot[9, 24]][a, z]  | 
Out[13]=  | -2 2 4 z 2 z 3 5 2  | 
In[14]:=  | {Vassiliev[2][Knot[9, 24]], Vassiliev[3][Knot[9, 24]]} | 
Out[14]=  | {0, -2} | 
In[15]:=  | Kh[Knot[9, 24]][q, t]  | 
Out[15]=  | 5 1 1 1 3 1 4 3  | 


