9 23

From Knot Atlas
Jump to navigationJump to search

9 22.gif

9_22

9 24.gif

9_24

9 23.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 23's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 23 at Knotilus!


Symmetrical decorative knot
With crossings on 3x3 grid
Depiction with two axes of symmetry
Mongolian ornament (two crossings are unnecessary)
Mongolian ornament, sum of two 9.23
Logo of the ICMC-USP, Brazil
Other depicture with central symmetry by Alain Esculier

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,16,8,17 X13,18,14,1 X17,14,18,15 X15,6,16,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 9, -2, 1, -3, 7, -4, 8, -9, 2, -8, 3, -5, 6, -7, 4, -6, 5
Dowker-Thistlethwaite code 4 10 12 16 2 8 18 6 14
Conway Notation [22122]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 23 ML.gif 9 23 AP.gif
[{11, 4}, {3, 9}, {8, 10}, {9, 11}, {10, 5}, {4, 6}, {5, 2}, {1, 3}, {2, 7}, {6, 8}, {7, 1}]

[edit Notes on presentations of 9 23]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index [math]\displaystyle{ \{4,7\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 10.6113
A-Polynomial See Data:9 23/A-polynomial

[edit Notes for 9 23's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 9 23's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t^2-11 t+15-11 t^{-1} +4 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^4+5 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 45, -4 }
Jones polynomial [math]\displaystyle{ q^{-2} -2 q^{-3} +5 q^{-4} -6 q^{-5} +8 q^{-6} -8 q^{-7} +6 q^{-8} -5 q^{-9} +3 q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}+z^4 a^8-2 a^8+2 z^4 a^6+4 z^2 a^6+2 a^6+z^4 a^4+2 z^2 a^4+a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-7 z^4 a^{12}+3 z^2 a^{12}+3 z^7 a^{11}-5 z^5 a^{11}+z a^{11}+z^8 a^{10}+4 z^6 a^{10}-10 z^4 a^{10}+3 z^2 a^{10}+5 z^7 a^9-6 z^5 a^9-2 z^3 a^9+4 z a^9+z^8 a^8+4 z^6 a^8-8 z^4 a^8+6 z^2 a^8-2 a^8+2 z^7 a^7+2 z^5 a^7-6 z^3 a^7+4 z a^7+3 z^6 a^6-4 z^4 a^6+4 z^2 a^6-2 a^6+2 z^5 a^5-2 z^3 a^5+z^4 a^4-2 z^2 a^4+a^4 }[/math]
The A2 invariant [math]\displaystyle{ -q^{34}+q^{32}+q^{30}-2 q^{28}-2 q^{24}-q^{22}+q^{20}+3 q^{16}+q^{12}+2 q^{10}-q^8+q^6 }[/math]
The G2 invariant [math]\displaystyle{ q^{176}-2 q^{174}+5 q^{172}-8 q^{170}+7 q^{168}-3 q^{166}-6 q^{164}+20 q^{162}-27 q^{160}+30 q^{158}-24 q^{156}+q^{154}+23 q^{152}-47 q^{150}+55 q^{148}-43 q^{146}+18 q^{144}+14 q^{142}-38 q^{140}+48 q^{138}-38 q^{136}+13 q^{134}+12 q^{132}-30 q^{130}+30 q^{128}-10 q^{126}-16 q^{124}+40 q^{122}-43 q^{120}+36 q^{118}-13 q^{116}-28 q^{114}+56 q^{112}-73 q^{110}+66 q^{108}-39 q^{106}-6 q^{104}+43 q^{102}-64 q^{100}+61 q^{98}-44 q^{96}+7 q^{94}+20 q^{92}-36 q^{90}+30 q^{88}-7 q^{86}-16 q^{84}+35 q^{82}-29 q^{80}+11 q^{78}+13 q^{76}-34 q^{74}+47 q^{72}-41 q^{70}+28 q^{68}-2 q^{66}-19 q^{64}+35 q^{62}-35 q^{60}+31 q^{58}-17 q^{56}+4 q^{54}+7 q^{52}-15 q^{50}+16 q^{48}-12 q^{46}+9 q^{44}-2 q^{42}-q^{40}+3 q^{38}-3 q^{36}+3 q^{34}-q^{32}+q^{30} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (5, -11)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 20 }[/math] [math]\displaystyle{ -88 }[/math] [math]\displaystyle{ 200 }[/math] [math]\displaystyle{ \frac{1462}{3} }[/math] [math]\displaystyle{ \frac{194}{3} }[/math] [math]\displaystyle{ -1760 }[/math] [math]\displaystyle{ -\frac{9040}{3} }[/math] [math]\displaystyle{ -\frac{1504}{3} }[/math] [math]\displaystyle{ -344 }[/math] [math]\displaystyle{ \frac{4000}{3} }[/math] [math]\displaystyle{ 3872 }[/math] [math]\displaystyle{ \frac{29240}{3} }[/math] [math]\displaystyle{ \frac{3880}{3} }[/math] [math]\displaystyle{ \frac{115087}{6} }[/math] [math]\displaystyle{ \frac{2986}{3} }[/math] [math]\displaystyle{ \frac{58214}{9} }[/math] [math]\displaystyle{ \frac{2389}{18} }[/math] [math]\displaystyle{ \frac{4687}{6} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 9 23. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        21-1
-7       3  3
-9      32  -1
-11     53   2
-13    33    0
-15   35     -2
-17  23      1
-19 13       -2
-21 2        2
-231         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials