10 114: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=10_114}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=10|k=114|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-7,8,-1,9,-2,10,-8,4,-5,3,-9,6,-10,7,-3,5,-4/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=13.3333%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=6.66667%>-6</td  ><td width=6.66667%>-5</td  ><td width=6.66667%>-4</td  ><td width=6.66667%>-3</td  ><td width=6.66667%>-2</td  ><td width=6.66667%>-1</td  ><td width=6.66667%>0</td  ><td width=6.66667%>1</td  ><td width=6.66667%>2</td  ><td width=6.66667%>3</td  ><td width=6.66667%>4</td  ><td width=13.3333%>χ</td></tr> | |||
| <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | |||
| <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> | |||
| <tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>1</td><td> </td><td>4</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>3</td><td> </td><td> </td><td>-4</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>8</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>-5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>8</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> | |||
| <tr align=center><td>-7</td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> | |||
| <tr align=center><td>-9</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> | |||
| <tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 114]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 114]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 13, 19, 14], X[20, 11, 1, 12],  | |||
|   X[12, 19, 13, 20], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5],  | |||
|   X[14, 7, 15, 8], X[16, 10, 17, 9]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 114]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7,  | |||
|   -3, 5, -4]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 114]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -2, 1, 3, -2, 3, -2, 3, -2, 3}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 114]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     2    10   21              2      3 | |||
| 27 - -- + -- - -- - 21 t + 10 t  - 2 t | |||
|       3    2   t | |||
|      t    t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 114]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     2      4      6 | |||
| 1 + z  - 2 z  - 2 z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 114], Knot[11, Alternating, 93]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 114]], KnotSignature[Knot[10, 114]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{93, 0}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 114]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -6   4    7    11   15   15             2      3    4 | |||
| 15 + q   - -- + -- - -- + -- - -- - 12 q + 8 q  - 4 q  + q | |||
|             5    4    3    2   q | |||
|            q    q    q    q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 114]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 114]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -18    2     3    4    2    2       2      4    6    8      10 | |||
| -2 + q    - --- - --- + -- + -- + -- + 3 q  - 3 q  + q  + q  - 2 q   +  | |||
|              16    10    8    4    2 | |||
|             q     q     q    q    q | |||
|    12 | |||
|   q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 114]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                     2                          3 | |||
|     2    4   z              3     2 z       2  2      4  2   2 z | |||
| -2 a  - a  - - - 3 a z - 2 a  z + ---- - 5 a  z  - 3 a  z  - ---- +  | |||
|              a                      2                          3 | |||
|                                    a                          a | |||
|      3                                        4      4 | |||
|   5 z          3       3  3      5  3    4   z    8 z        2  4 | |||
|   ---- + 18 a z  + 18 a  z  + 7 a  z  + z  + -- - ---- + 26 a  z  +  | |||
|    a                                          4     2 | |||
|                                              a     a | |||
|                           5       5 | |||
|       4  4      6  4   4 z    13 z          5       3  5       5  5 | |||
|   14 a  z  - 2 a  z  + ---- - ----- - 27 a z  - 21 a  z  - 11 a  z  -  | |||
|                          3      a | |||
|                         a | |||
|             6                                     7 | |||
|      6   8 z        2  6       4  6    6  6   10 z         7 | |||
|   9 z  + ---- - 35 a  z  - 17 a  z  + a  z  + ----- + 8 a z  +  | |||
|            2                                    a | |||
|           a | |||
|      3  7      5  7      8       2  8      4  8        9      3  9 | |||
|   2 a  z  + 4 a  z  + 8 z  + 14 a  z  + 6 a  z  + 3 a z  + 3 a  z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 114]], Vassiliev[3][Knot[10, 114]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 114]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8           1        3        1       4       3       7       4 | |||
| - + 8 q + ------ + ------ + ----- + ----- + ----- + ----- + ----- +  | |||
| q          13  6    11  5    9  5    9  4    7  4    7  3    5  3 | |||
|           q   t    q   t    q  t    q  t    q  t    q  t    q  t | |||
|     8       7      7      8               3        3  2      5  2 | |||
|   ----- + ----- + ---- + --- + 5 q t + 7 q  t + 3 q  t  + 5 q  t  +  | |||
|    5  2    3  2    3     q t | |||
|   q  t    q  t    q  t | |||
|    5  3      7  3    9  4 | |||
|   q  t  + 3 q  t  + q  t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:44, 27 August 2005
|  |  | 
|   | Visit 10 114's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 114's page at Knotilus! Visit 10 114's page at the original Knot Atlas! | 10 114 Quick Notes | 
10 114 Further Notes and Views
Knot presentations
| Planar diagram presentation | X6271 X8394 X18,13,19,14 X20,11,1,12 X12,19,13,20 X2,16,3,15 X4,17,5,18 X10,6,11,5 X14,7,15,8 X16,10,17,9 | 
| Gauss code | 1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, -4 | 
| Dowker-Thistlethwaite code | 6 8 10 14 16 20 18 2 4 12 | 
| Conway Notation | [8*30] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 114"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 93, 0 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (1, -1) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
| 9 | 1 | 1 | |||||||||||||||||||
| 7 | 3 | -3 | |||||||||||||||||||
| 5 | 5 | 1 | 4 | ||||||||||||||||||
| 3 | 7 | 3 | -4 | ||||||||||||||||||
| 1 | 8 | 5 | 3 | ||||||||||||||||||
| -1 | 8 | 8 | 0 | ||||||||||||||||||
| -3 | 7 | 7 | 0 | ||||||||||||||||||
| -5 | 4 | 8 | 4 | ||||||||||||||||||
| -7 | 3 | 7 | -4 | ||||||||||||||||||
| -9 | 1 | 4 | 3 | ||||||||||||||||||
| -11 | 3 | -3 | |||||||||||||||||||
| -13 | 1 | 1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[10, 114]] | 
| Out[2]= | 10 | 
| In[3]:= | PD[Knot[10, 114]] | 
| Out[3]= | PD[X[6, 2, 7, 1], X[8, 3, 9, 4], X[18, 13, 19, 14], X[20, 11, 1, 12],X[12, 19, 13, 20], X[2, 16, 3, 15], X[4, 17, 5, 18], X[10, 6, 11, 5],X[14, 7, 15, 8], X[16, 10, 17, 9]] | 
| In[4]:= | GaussCode[Knot[10, 114]] | 
| Out[4]= | GaussCode[1, -6, 2, -7, 8, -1, 9, -2, 10, -8, 4, -5, 3, -9, 6, -10, 7, -3, 5, -4] | 
| In[5]:= | BR[Knot[10, 114]] | 
| Out[5]= | BR[4, {-1, -1, -2, 1, 3, -2, 3, -2, 3, -2, 3}] | 
| In[6]:= | alex = Alexander[Knot[10, 114]][t] | 
| Out[6]= | 2 10 21 2 3 | 
| In[7]:= | Conway[Knot[10, 114]][z] | 
| Out[7]= | 2 4 6 1 + z - 2 z - 2 z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[10, 114], Knot[11, Alternating, 93]} | 
| In[9]:= | {KnotDet[Knot[10, 114]], KnotSignature[Knot[10, 114]]} | 
| Out[9]= | {93, 0} | 
| In[10]:= | J=Jones[Knot[10, 114]][q] | 
| Out[10]= | -6 4 7 11 15 15 2 3 4 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[10, 114]} | 
| In[12]:= | A2Invariant[Knot[10, 114]][q] | 
| Out[12]= | -18 2 3 4 2 2 2 4 6 8 10 | 
| In[13]:= | Kauffman[Knot[10, 114]][a, z] | 
| Out[13]= | 2 32 4 z 3 2 z 2 2 4 2 2 z | 
| In[14]:= | {Vassiliev[2][Knot[10, 114]], Vassiliev[3][Knot[10, 114]]} | 
| Out[14]= | {0, -1} | 
| In[15]:= | Kh[Knot[10, 114]][q, t] | 
| Out[15]= | 8 1 3 1 4 3 7 4 | 


