10 115
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 115's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X6271 X14,6,15,5 X20,15,1,16 X16,7,17,8 X8,19,9,20 X18,11,19,12 X10,4,11,3 X4,10,5,9 X12,17,13,18 X2,14,3,13 |
| Gauss code | 1, -10, 7, -8, 2, -1, 4, -5, 8, -7, 6, -9, 10, -2, 3, -4, 9, -6, 5, -3 |
| Dowker-Thistlethwaite code | 6 10 14 16 4 18 2 20 12 8 |
| Conway Notation | [8*20.20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{3, 11}, {2, 9}, {8, 10}, {9, 12}, {11, 4}, {5, 3}, {4, 7}, {6, 8}, {7, 13}, {12, 6}, {1, 5}, {13, 2}, {10, 1}] |
[edit Notes on presentations of 10 115]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 115"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X14,6,15,5 X20,15,1,16 X16,7,17,8 X8,19,9,20 X18,11,19,12 X10,4,11,3 X4,10,5,9 X12,17,13,18 X2,14,3,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 7, -8, 2, -1, 4, -5, 8, -7, 6, -9, 10, -2, 3, -4, 9, -6, 5, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 16 4 18 2 20 12 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[8*20.20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,-2,1,3,2,2,-4,-3,2,-3,-3,-4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 11}, {2, 9}, {8, 10}, {9, 12}, {11, 4}, {5, 3}, {4, 7}, {6, 8}, {7, 13}, {12, 6}, {1, 5}, {13, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+9 t^2-26 t+37-26 t^{-1} +9 t^{-2} - t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+3 z^4+z^2+1} |
| 2nd Alexander ideal (db, data sources) | |
| Determinant and Signature | { 109, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-9 q^3+14 q^2-17 q+19-17 q^{-1} +14 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+2 a^2 z^4+2 z^4 a^{-2} -z^4-a^4 z^2+a^2 z^2+z^2 a^{-2} -z^2 a^{-4} +z^2-a^2- a^{-2} +3} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 a z^9+3 z^9 a^{-1} +8 a^2 z^8+8 z^8 a^{-2} +16 z^8+8 a^3 z^7+13 a z^7+13 z^7 a^{-1} +8 z^7 a^{-3} +4 a^4 z^6-9 a^2 z^6-9 z^6 a^{-2} +4 z^6 a^{-4} -26 z^6+a^5 z^5-13 a^3 z^5-34 a z^5-34 z^5 a^{-1} -13 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4+a^2 z^4+z^4 a^{-2} -5 z^4 a^{-4} +12 z^4-a^5 z^3+8 a^3 z^3+22 a z^3+22 z^3 a^{-1} +8 z^3 a^{-3} -z^3 a^{-5} +2 a^4 z^2-a^2 z^2-z^2 a^{-2} +2 z^2 a^{-4} -6 z^2-2 a^3 z-5 a z-5 z a^{-1} -2 z a^{-3} +a^2+ a^{-2} +3} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{16}+q^{14}+2 q^{12}-4 q^{10}+2 q^8-q^6-2 q^4+5 q^2-1+5 q^{-2} -2 q^{-4} - q^{-6} +2 q^{-8} -4 q^{-10} +2 q^{-12} + q^{-14} - q^{-16} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+16 q^{72}-17 q^{70}+8 q^{68}+17 q^{66}-53 q^{64}+98 q^{62}-130 q^{60}+121 q^{58}-62 q^{56}-61 q^{54}+225 q^{52}-360 q^{50}+410 q^{48}-311 q^{46}+62 q^{44}+258 q^{42}-536 q^{40}+646 q^{38}-522 q^{36}+193 q^{34}+206 q^{32}-514 q^{30}+589 q^{28}-396 q^{26}+28 q^{24}+339 q^{22}-530 q^{20}+436 q^{18}-110 q^{16}-314 q^{14}+652 q^{12}-743 q^{10}+555 q^8-133 q^6-361 q^4+759 q^2-907+759 q^{-2} -361 q^{-4} -133 q^{-6} +555 q^{-8} -743 q^{-10} +652 q^{-12} -314 q^{-14} -110 q^{-16} +436 q^{-18} -530 q^{-20} +339 q^{-22} +28 q^{-24} -396 q^{-26} +589 q^{-28} -514 q^{-30} +206 q^{-32} +193 q^{-34} -522 q^{-36} +646 q^{-38} -536 q^{-40} +258 q^{-42} +62 q^{-44} -311 q^{-46} +410 q^{-48} -360 q^{-50} +225 q^{-52} -61 q^{-54} -62 q^{-56} +121 q^{-58} -130 q^{-60} +98 q^{-62} -53 q^{-64} +17 q^{-66} +8 q^{-68} -17 q^{-70} +16 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+3 q^9-5 q^7+5 q^5-3 q^3+2 q+2 q^{-1} -3 q^{-3} +5 q^{-5} -5 q^{-7} +3 q^{-9} - q^{-11} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-3 q^{30}+q^{28}+11 q^{26}-18 q^{24}-9 q^{22}+44 q^{20}-24 q^{18}-43 q^{16}+65 q^{14}-64 q^{10}+42 q^8+27 q^6-45 q^4-2 q^2+37-2 q^{-2} -45 q^{-4} +27 q^{-6} +42 q^{-8} -64 q^{-10} +65 q^{-14} -43 q^{-16} -24 q^{-18} +44 q^{-20} -9 q^{-22} -18 q^{-24} +11 q^{-26} + q^{-28} -3 q^{-30} + q^{-32} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{63}+3 q^{61}-q^{59}-7 q^{57}+2 q^{55}+21 q^{53}+4 q^{51}-58 q^{49}-25 q^{47}+108 q^{45}+93 q^{43}-151 q^{41}-226 q^{39}+156 q^{37}+389 q^{35}-73 q^{33}-540 q^{31}-100 q^{29}+629 q^{27}+303 q^{25}-602 q^{23}-495 q^{21}+480 q^{19}+618 q^{17}-298 q^{15}-650 q^{13}+107 q^{11}+599 q^9+81 q^7-504 q^5-239 q^3+379 q+379 q^{-1} -239 q^{-3} -504 q^{-5} +81 q^{-7} +599 q^{-9} +107 q^{-11} -650 q^{-13} -298 q^{-15} +618 q^{-17} +480 q^{-19} -495 q^{-21} -602 q^{-23} +303 q^{-25} +629 q^{-27} -100 q^{-29} -540 q^{-31} -73 q^{-33} +389 q^{-35} +156 q^{-37} -226 q^{-39} -151 q^{-41} +93 q^{-43} +108 q^{-45} -25 q^{-47} -58 q^{-49} +4 q^{-51} +21 q^{-53} +2 q^{-55} -7 q^{-57} - q^{-59} +3 q^{-61} - q^{-63} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{42}-q^{40}-3 q^{38}+2 q^{36}+8 q^{34}-17 q^{30}-5 q^{28}+24 q^{26}+4 q^{24}-27 q^{22}-4 q^{20}+33 q^{18}+10 q^{16}-38 q^{14}-q^{12}+26 q^{10}-9 q^8-18 q^6+9 q^4+12 q^2-6+12 q^{-2} +9 q^{-4} -18 q^{-6} -9 q^{-8} +26 q^{-10} - q^{-12} -38 q^{-14} +10 q^{-16} +33 q^{-18} -4 q^{-20} -27 q^{-22} +4 q^{-24} +24 q^{-26} -5 q^{-28} -17 q^{-30} +8 q^{-34} +2 q^{-36} -3 q^{-38} - q^{-40} + q^{-42} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{34}-3 q^{32}+q^{30}+8 q^{28}-15 q^{26}+3 q^{24}+26 q^{22}-35 q^{20}+4 q^{18}+40 q^{16}-49 q^{14}+2 q^{12}+39 q^{10}-35 q^8-5 q^6+26 q^4-q^2-8- q^{-2} +26 q^{-4} -5 q^{-6} -35 q^{-8} +39 q^{-10} +2 q^{-12} -49 q^{-14} +40 q^{-16} +4 q^{-18} -35 q^{-20} +26 q^{-22} +3 q^{-24} -15 q^{-26} +8 q^{-28} + q^{-30} -3 q^{-32} + q^{-34} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{21}+q^{19}+2 q^{15}-4 q^{13}+3 q^{11}-4 q^9+q^7-2 q^5+4 q^3+2 q+2 q^{-1} +4 q^{-3} -2 q^{-5} + q^{-7} -4 q^{-9} +3 q^{-11} -4 q^{-13} +2 q^{-15} + q^{-19} - q^{-21} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}+3 q^{32}-7 q^{30}+14 q^{28}-25 q^{26}+37 q^{24}-48 q^{22}+57 q^{20}-60 q^{18}+54 q^{16}-41 q^{14}+20 q^{12}+7 q^{10}-37 q^8+67 q^6-90 q^4+109 q^2-114+109 q^{-2} -90 q^{-4} +67 q^{-6} -37 q^{-8} +7 q^{-10} +20 q^{-12} -41 q^{-14} +54 q^{-16} -60 q^{-18} +57 q^{-20} -48 q^{-22} +37 q^{-24} -25 q^{-26} +14 q^{-28} -7 q^{-30} +3 q^{-32} - q^{-34} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-3 q^{52}-3 q^{50}+4 q^{48}+11 q^{46}+q^{44}-20 q^{42}-16 q^{40}+20 q^{38}+37 q^{36}-3 q^{34}-51 q^{32}-25 q^{30}+47 q^{28}+50 q^{26}-25 q^{24}-64 q^{22}-5 q^{20}+59 q^{18}+26 q^{16}-44 q^{14}-37 q^{12}+28 q^{10}+40 q^8-13 q^6-40 q^4+6 q^2+43+6 q^{-2} -40 q^{-4} -13 q^{-6} +40 q^{-8} +28 q^{-10} -37 q^{-12} -44 q^{-14} +26 q^{-16} +59 q^{-18} -5 q^{-20} -64 q^{-22} -25 q^{-24} +50 q^{-26} +47 q^{-28} -25 q^{-30} -51 q^{-32} -3 q^{-34} +37 q^{-36} +20 q^{-38} -16 q^{-40} -20 q^{-42} + q^{-44} +11 q^{-46} +4 q^{-48} -3 q^{-50} -3 q^{-52} + q^{-56} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+16 q^{72}-17 q^{70}+8 q^{68}+17 q^{66}-53 q^{64}+98 q^{62}-130 q^{60}+121 q^{58}-62 q^{56}-61 q^{54}+225 q^{52}-360 q^{50}+410 q^{48}-311 q^{46}+62 q^{44}+258 q^{42}-536 q^{40}+646 q^{38}-522 q^{36}+193 q^{34}+206 q^{32}-514 q^{30}+589 q^{28}-396 q^{26}+28 q^{24}+339 q^{22}-530 q^{20}+436 q^{18}-110 q^{16}-314 q^{14}+652 q^{12}-743 q^{10}+555 q^8-133 q^6-361 q^4+759 q^2-907+759 q^{-2} -361 q^{-4} -133 q^{-6} +555 q^{-8} -743 q^{-10} +652 q^{-12} -314 q^{-14} -110 q^{-16} +436 q^{-18} -530 q^{-20} +339 q^{-22} +28 q^{-24} -396 q^{-26} +589 q^{-28} -514 q^{-30} +206 q^{-32} +193 q^{-34} -522 q^{-36} +646 q^{-38} -536 q^{-40} +258 q^{-42} +62 q^{-44} -311 q^{-46} +410 q^{-48} -360 q^{-50} +225 q^{-52} -61 q^{-54} -62 q^{-56} +121 q^{-58} -130 q^{-60} +98 q^{-62} -53 q^{-64} +17 q^{-66} +8 q^{-68} -17 q^{-70} +16 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 115"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+9 t^2-26 t+37-26 t^{-1} +9 t^{-2} - t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+3 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 109, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+4 q^4-9 q^3+14 q^2-17 q+19-17 q^{-1} +14 q^{-2} -9 q^{-3} +4 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^6+2 a^2 z^4+2 z^4 a^{-2} -z^4-a^4 z^2+a^2 z^2+z^2 a^{-2} -z^2 a^{-4} +z^2-a^2- a^{-2} +3} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 a z^9+3 z^9 a^{-1} +8 a^2 z^8+8 z^8 a^{-2} +16 z^8+8 a^3 z^7+13 a z^7+13 z^7 a^{-1} +8 z^7 a^{-3} +4 a^4 z^6-9 a^2 z^6-9 z^6 a^{-2} +4 z^6 a^{-4} -26 z^6+a^5 z^5-13 a^3 z^5-34 a z^5-34 z^5 a^{-1} -13 z^5 a^{-3} +z^5 a^{-5} -5 a^4 z^4+a^2 z^4+z^4 a^{-2} -5 z^4 a^{-4} +12 z^4-a^5 z^3+8 a^3 z^3+22 a z^3+22 z^3 a^{-1} +8 z^3 a^{-3} -z^3 a^{-5} +2 a^4 z^2-a^2 z^2-z^2 a^{-2} +2 z^2 a^{-4} -6 z^2-2 a^3 z-5 a z-5 z a^{-1} -2 z a^{-3} +a^2+ a^{-2} +3} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 115"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^3+9 t^2-26 t+37-26 t^{-1} +9 t^{-2} - t^{-3} } , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 115. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{15}-4 q^{14}+4 q^{13}+11 q^{12}-33 q^{11}+13 q^{10}+64 q^9-101 q^8-6 q^7+172 q^6-166 q^5-70 q^4+278 q^3-181 q^2-142 q+321-142 q^{-1} -181 q^{-2} +278 q^{-3} -70 q^{-4} -166 q^{-5} +172 q^{-6} -6 q^{-7} -101 q^{-8} +64 q^{-9} +13 q^{-10} -33 q^{-11} +11 q^{-12} +4 q^{-13} -4 q^{-14} + q^{-15} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{30}+4 q^{29}-4 q^{28}-6 q^{27}+8 q^{26}+23 q^{25}-21 q^{24}-68 q^{23}+41 q^{22}+156 q^{21}-36 q^{20}-312 q^{19}-34 q^{18}+538 q^{17}+197 q^{16}-774 q^{15}-501 q^{14}+978 q^{13}+926 q^{12}-1100 q^{11}-1406 q^{10}+1085 q^9+1901 q^8-962 q^7-2322 q^6+733 q^5+2658 q^4-470 q^3-2840 q^2+148 q+2923+148 q^{-1} -2840 q^{-2} -470 q^{-3} +2658 q^{-4} +733 q^{-5} -2322 q^{-6} -962 q^{-7} +1901 q^{-8} +1085 q^{-9} -1406 q^{-10} -1100 q^{-11} +926 q^{-12} +978 q^{-13} -501 q^{-14} -774 q^{-15} +197 q^{-16} +538 q^{-17} -34 q^{-18} -312 q^{-19} -36 q^{-20} +156 q^{-21} +41 q^{-22} -68 q^{-23} -21 q^{-24} +23 q^{-25} +8 q^{-26} -6 q^{-27} -4 q^{-28} +4 q^{-29} - q^{-30} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}-4 q^{49}+4 q^{48}+6 q^{47}-13 q^{46}+2 q^{45}-15 q^{44}+40 q^{43}+49 q^{42}-94 q^{41}-61 q^{40}-89 q^{39}+246 q^{38}+385 q^{37}-253 q^{36}-518 q^{35}-744 q^{34}+642 q^{33}+1807 q^{32}+368 q^{31}-1400 q^{30}-3385 q^{29}-217 q^{28}+4490 q^{27}+3818 q^{26}-590 q^{25}-8228 q^{24}-5045 q^{23}+5642 q^{22}+10246 q^{21}+5143 q^{20}-11875 q^{19}-13751 q^{18}+1667 q^{17}+15820 q^{16}+15318 q^{15}-10566 q^{14}-22033 q^{13}-6857 q^{12}+16840 q^{11}+25391 q^{10}-4814 q^9-26115 q^8-15813 q^7+13604 q^6+31686 q^5+2140 q^4-25795 q^3-22277 q^2+8365 q+33665+8365 q^{-1} -22277 q^{-2} -25795 q^{-3} +2140 q^{-4} +31686 q^{-5} +13604 q^{-6} -15813 q^{-7} -26115 q^{-8} -4814 q^{-9} +25391 q^{-10} +16840 q^{-11} -6857 q^{-12} -22033 q^{-13} -10566 q^{-14} +15318 q^{-15} +15820 q^{-16} +1667 q^{-17} -13751 q^{-18} -11875 q^{-19} +5143 q^{-20} +10246 q^{-21} +5642 q^{-22} -5045 q^{-23} -8228 q^{-24} -590 q^{-25} +3818 q^{-26} +4490 q^{-27} -217 q^{-28} -3385 q^{-29} -1400 q^{-30} +368 q^{-31} +1807 q^{-32} +642 q^{-33} -744 q^{-34} -518 q^{-35} -253 q^{-36} +385 q^{-37} +246 q^{-38} -89 q^{-39} -61 q^{-40} -94 q^{-41} +49 q^{-42} +40 q^{-43} -15 q^{-44} +2 q^{-45} -13 q^{-46} +6 q^{-47} +4 q^{-48} -4 q^{-49} + q^{-50} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




