10 97: Difference between revisions
|  (Resetting knot page to basic template.) | No edit summary | ||
| Line 1: | Line 1: | ||
| <!--  --> | |||
| {{Template:Basic Knot Invariants|name=10_97}} | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <span id="top"></span> | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| {{Knot Navigation Links|ext=gif}} | |||
| {| align=left | |||
| |- valign=top | |||
| |[[Image:{{PAGENAME}}.gif]] | |||
| |{{Rolfsen Knot Site Links|n=10|k=97|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-1,2,-10,7,-3,4,-6,5,-2,8,-9,10,-5,6,-7,9,-8/goTop.html}} | |||
| |{{:{{PAGENAME}} Quick Notes}} | |||
| |} | |||
| <br style="clear:both" /> | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| {{Knot Presentations}} | |||
| {{3D Invariants}} | |||
| {{4D Invariants}} | |||
| {{Polynomial Invariants}} | |||
| {{Vassiliev Invariants}} | |||
| ===[[Khovanov Homology]]=== | |||
| The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. | |||
| <center><table border=1> | |||
| <tr align=center> | |||
| <td width=13.3333%><table cellpadding=0 cellspacing=0> | |||
|  <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | |||
| <tr><td>j</td><td> </td><td>\</td></tr> | |||
| </table></td> | |||
|  <td width=6.66667%>-2</td  ><td width=6.66667%>-1</td  ><td width=6.66667%>0</td  ><td width=6.66667%>1</td  ><td width=6.66667%>2</td  ><td width=6.66667%>3</td  ><td width=6.66667%>4</td  ><td width=6.66667%>5</td  ><td width=6.66667%>6</td  ><td width=6.66667%>7</td  ><td width=6.66667%>8</td  ><td width=13.3333%>χ</td></tr> | |||
| <tr align=center><td>19</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> | |||
| <tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow> </td><td>-3</td></tr> | |||
| <tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>3</td><td> </td><td> </td><td>-4</td></tr> | |||
| <tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | |||
| <tr align=center><td>5</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> | |||
| <tr align=center><td>3</td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-4</td></tr> | |||
| <tr align=center><td>1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>4</td></tr> | |||
| <tr align=center><td>-1</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> | |||
| <tr align=center><td>-3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | |||
| </table></center> | |||
| {{Computer Talk Header}} | |||
| <table> | |||
| <tr valign=top> | |||
| <td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=    </pre></td> | |||
| <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> | |||
| </tr> | |||
| <tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 97]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 97]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[12, 6, 13, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],  | |||
|   X[16, 12, 17, 11], X[10, 18, 11, 17], X[18, 8, 19, 7],  | |||
|   X[20, 14, 1, 13], X[14, 20, 15, 19], X[6, 16, 7, 15]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 97]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6,  | |||
|   -7, 9, -8]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 97]]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, 2, 1, -3, 2, -1, 2, 3, -4, 3, -4}]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 97]][t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      5    22             2 | |||
| -33 - -- + -- + 22 t - 5 t | |||
|        2   t | |||
|       t</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 97]][z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       2      4 | |||
| 1 + 2 z  - 5 z</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 97]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 97]], KnotSignature[Knot[10, 97]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{87, 2}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 97]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     1             2       3       4       5       6      7      8    9 | |||
| -3 + - + 7 q - 11 q  + 14 q  - 14 q  + 14 q  - 11 q  + 7 q  - 4 q  + q | |||
|      q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 97]}</nowiki></pre></td></tr> | |||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 97]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -4    -2      2      4    6      8      10      12      14 | |||
| -1 + q   - q   + 4 q  - 2 q  + q  + 2 q  - 2 q   + 2 q   - 2 q   +  | |||
|      16    18      20      22      24      26    28 | |||
|   2 q   + q   - 2 q   + 3 q   - 2 q   - 2 q   + q</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 97]][a, z]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                                              2     2      2       2 | |||
|   -8   2    2    2    4 z   6 z   2 z    2   z     z    3 z    10 z | |||
| -a   - -- - -- - -- - --- - --- - --- - z  + --- + -- + ---- + ----- +  | |||
|         6    4    2    7     5     3          10    8     6      4 | |||
|        a    a    a    a     a     a          a     a     a      a | |||
|      2      3       3       3       3      3           4      4 | |||
|   6 z    8 z    20 z    24 z    10 z    2 z     4   2 z    4 z | |||
|   ---- + ---- + ----- + ----- + ----- - ---- + z  - ---- + ---- +  | |||
|     2      9      7       5       3      a           10      8 | |||
|    a      a      a       a       a                  a       a | |||
|      4      4      4       5       5       5       5      5    6 | |||
|   5 z    9 z    7 z    11 z    28 z    32 z    12 z    3 z    z | |||
|   ---- - ---- - ---- - ----- - ----- - ----- - ----- + ---- + --- -  | |||
|     6      4      2      9       7       5       3      a      10 | |||
|    a      a      a      a       a       a       a             a | |||
|       6       6      6      6      7      7       7      7      8 | |||
|   11 z    21 z    3 z    6 z    4 z    7 z    11 z    8 z    5 z | |||
|   ----- - ----- - ---- + ---- + ---- + ---- + ----- + ---- + ---- +  | |||
|     8       6       4      2      9      7      5       3      8 | |||
|    a       a       a      a      a      a      a       a      a | |||
|       8      8      9      9 | |||
|   11 z    6 z    2 z    2 z | |||
|   ----- + ---- + ---- + ---- | |||
|     6       4      7      5 | |||
|    a       a      a      a</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 97]], Vassiliev[3][Knot[10, 97]]}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 4}</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 97]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>         3     1      2    q      3        5        5  2      7  2 | |||
| 5 q + 3 q  + ----- + --- + - + 7 q  t + 4 q  t + 7 q  t  + 7 q  t  +  | |||
|               3  2   q t   t | |||
|              q  t | |||
|      7  3      9  3      9  4      11  4      11  5      13  5 | |||
|   7 q  t  + 7 q  t  + 7 q  t  + 7 q   t  + 4 q   t  + 7 q   t  +  | |||
|      13  6      15  6    15  7      17  7    19  8 | |||
|   3 q   t  + 4 q   t  + q   t  + 3 q   t  + q   t</nowiki></pre></td></tr> | |||
| </table> | |||
Revision as of 21:45, 27 August 2005
|  |  | 
|   | Visit 10 97's page at the  Knot Server (KnotPlot driven, includes 3D interactive images!) Visit 10 97's page at Knotilus! Visit 10 97's page at the original Knot Atlas! | 10 97 Quick Notes | 
Knot presentations
| Planar diagram presentation | X4251 X12,6,13,5 X8394 X2,9,3,10 X16,12,17,11 X10,18,11,17 X18,8,19,7 X20,14,1,13 X14,20,15,19 X6,16,7,15 | 
| Gauss code | 1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6, -7, 9, -8 | 
| Dowker-Thistlethwaite code | 4 8 12 18 2 16 20 6 10 14 | 
| Conway Notation | [.2.210.2] | 
Three dimensional invariants
| 
 | 
Four dimensional invariants
| 
 | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 2,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
| In[1]:= | AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory` | 
| Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
 | 
| In[3]:= | K = Knot["10 97"]; | 
| In[4]:= | Alexander[K][t] | 
| KnotTheory::loading: Loading precomputed data in PD4Knots`. | 
| Out[4]= | 
| In[5]:= | Conway[K][z] | 
| Out[5]= | 
| In[6]:= | Alexander[K, 2][t] | 
| KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005. | 
| Out[6]= | 
| In[7]:= | {KnotDet[K], KnotSignature[K]} | 
| Out[7]= | { 87, 2 } | 
| In[8]:= | Jones[K][q] | 
| KnotTheory::loading: Loading precomputed data in Jones4Knots`. | 
| Out[8]= | 
| In[9]:= | HOMFLYPT[K][a, z] | 
| KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison. | 
| Out[9]= | 
| In[10]:= | Kauffman[K][a, z] | 
| KnotTheory::loading: Loading precomputed data in Kauffman4Knots`. | 
| Out[10]= | 
Vassiliev invariants
| V2 and V3: | (2, 4) | 
| V2,1 through V6,9: | 
 | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 97. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
| 
 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | χ | |||||||||
| 19 | 1 | 1 | |||||||||||||||||||
| 17 | 3 | -3 | |||||||||||||||||||
| 15 | 4 | 1 | 3 | ||||||||||||||||||
| 13 | 7 | 3 | -4 | ||||||||||||||||||
| 11 | 7 | 4 | 3 | ||||||||||||||||||
| 9 | 7 | 7 | 0 | ||||||||||||||||||
| 7 | 7 | 7 | 0 | ||||||||||||||||||
| 5 | 4 | 7 | 3 | ||||||||||||||||||
| 3 | 3 | 7 | -4 | ||||||||||||||||||
| 1 | 1 | 5 | 4 | ||||||||||||||||||
| -1 | 2 | -2 | |||||||||||||||||||
| -3 | 1 | 1 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
| In[1]:= | << KnotTheory` | 
| Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
| In[2]:= | Crossings[Knot[10, 97]] | 
| Out[2]= | 10 | 
| In[3]:= | PD[Knot[10, 97]] | 
| Out[3]= | PD[X[4, 2, 5, 1], X[12, 6, 13, 5], X[8, 3, 9, 4], X[2, 9, 3, 10],X[16, 12, 17, 11], X[10, 18, 11, 17], X[18, 8, 19, 7],X[20, 14, 1, 13], X[14, 20, 15, 19], X[6, 16, 7, 15]] | 
| In[4]:= | GaussCode[Knot[10, 97]] | 
| Out[4]= | GaussCode[1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6, -7, 9, -8] | 
| In[5]:= | BR[Knot[10, 97]] | 
| Out[5]= | BR[5, {1, 1, 2, -1, 2, 1, -3, 2, -1, 2, 3, -4, 3, -4}] | 
| In[6]:= | alex = Alexander[Knot[10, 97]][t] | 
| Out[6]= | 5 22 2 | 
| In[7]:= | Conway[Knot[10, 97]][z] | 
| Out[7]= | 2 4 1 + 2 z - 5 z | 
| In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] | 
| Out[8]= | {Knot[10, 97]} | 
| In[9]:= | {KnotDet[Knot[10, 97]], KnotSignature[Knot[10, 97]]} | 
| Out[9]= | {87, 2} | 
| In[10]:= | J=Jones[Knot[10, 97]][q] | 
| Out[10]= | 1 2 3 4 5 6 7 8 9 | 
| In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] | 
| Out[11]= | {Knot[10, 97]} | 
| In[12]:= | A2Invariant[Knot[10, 97]][q] | 
| Out[12]= | -4 -2 2 4 6 8 10 12 14 | 
| In[13]:= | Kauffman[Knot[10, 97]][a, z] | 
| Out[13]= | 2 2 2 2-8 2 2 2 4 z 6 z 2 z 2 z z 3 z 10 z | 
| In[14]:= | {Vassiliev[2][Knot[10, 97]], Vassiliev[3][Knot[10, 97]]} | 
| Out[14]= | {0, 4} | 
| In[15]:= | Kh[Knot[10, 97]][q, t] | 
| Out[15]= | 3 1 2 q 3 5 5 2 7 2 | 


