10 97
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 97's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X12,6,13,5 X8394 X2,9,3,10 X16,12,17,11 X10,18,11,17 X18,8,19,7 X20,14,1,13 X14,20,15,19 X6,16,7,15 |
| Gauss code | 1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6, -7, 9, -8 |
| Dowker-Thistlethwaite code | 4 8 12 18 2 16 20 6 10 14 |
| Conway Notation | [.2.210.2] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 14, width is 5, Braid index is 5 |
|
![]() [{2, 12}, {1, 7}, {8, 3}, {4, 2}, {3, 6}, {7, 5}, {6, 9}, {11, 8}, {12, 10}, {9, 4}, {5, 11}, {10, 1}] |
[edit Notes on presentations of 10 97]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 97"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X12,6,13,5 X8394 X2,9,3,10 X16,12,17,11 X10,18,11,17 X18,8,19,7 X20,14,1,13 X14,20,15,19 X6,16,7,15 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -1, 2, -10, 7, -3, 4, -6, 5, -2, 8, -9, 10, -5, 6, -7, 9, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 18 2 16 20 6 10 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[.2.210.2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{1,1,2,-1,2,1,-3,2,-1,2,3,-4,3,-4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 14, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{2, 12}, {1, 7}, {8, 3}, {4, 2}, {3, 6}, {7, 5}, {6, 9}, {11, 8}, {12, 10}, {9, 4}, {5, 11}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 t^2+22 t-33+22 t^{-1} -5 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 87, 2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-4 q^8+7 q^7-11 q^6+14 q^5-14 q^4+14 q^3-11 q^2+7 q-3+ q^{-1} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -3 z^4 a^{-4} -z^4 a^{-6} +2 z^2 a^{-2} -4 z^2 a^{-4} +2 z^2 a^{-6} +z^2 a^{-8} +z^2+2 a^{-2} -2 a^{-4} +2 a^{-6} - a^{-8} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-5} +2 z^9 a^{-7} +6 z^8 a^{-4} +11 z^8 a^{-6} +5 z^8 a^{-8} +8 z^7 a^{-3} +11 z^7 a^{-5} +7 z^7 a^{-7} +4 z^7 a^{-9} +6 z^6 a^{-2} -3 z^6 a^{-4} -21 z^6 a^{-6} -11 z^6 a^{-8} +z^6 a^{-10} +3 z^5 a^{-1} -12 z^5 a^{-3} -32 z^5 a^{-5} -28 z^5 a^{-7} -11 z^5 a^{-9} -7 z^4 a^{-2} -9 z^4 a^{-4} +5 z^4 a^{-6} +4 z^4 a^{-8} -2 z^4 a^{-10} +z^4-2 z^3 a^{-1} +10 z^3 a^{-3} +24 z^3 a^{-5} +20 z^3 a^{-7} +8 z^3 a^{-9} +6 z^2 a^{-2} +10 z^2 a^{-4} +3 z^2 a^{-6} +z^2 a^{-8} +z^2 a^{-10} -z^2-2 z a^{-3} -6 z a^{-5} -4 z a^{-7} -2 a^{-2} -2 a^{-4} -2 a^{-6} - a^{-8} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-q^2-1+4 q^{-2} -2 q^{-4} + q^{-6} +2 q^{-8} -2 q^{-10} +2 q^{-12} -2 q^{-14} +2 q^{-16} + q^{-18} -2 q^{-20} +3 q^{-22} -2 q^{-24} -2 q^{-26} + q^{-28} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+6 q^{10}-5 q^8+10 q^4-19 q^2+31-39 q^{-2} +37 q^{-4} -22 q^{-6} -8 q^{-8} +53 q^{-10} -94 q^{-12} +123 q^{-14} -126 q^{-16} +82 q^{-18} - q^{-20} -105 q^{-22} +205 q^{-24} -241 q^{-26} +205 q^{-28} -91 q^{-30} -61 q^{-32} +196 q^{-34} -257 q^{-36} +214 q^{-38} -82 q^{-40} -83 q^{-42} +199 q^{-44} -208 q^{-46} +106 q^{-48} +71 q^{-50} -229 q^{-52} +296 q^{-54} -241 q^{-56} +68 q^{-58} +148 q^{-60} -329 q^{-62} +404 q^{-64} -336 q^{-66} +158 q^{-68} +73 q^{-70} -266 q^{-72} +359 q^{-74} -328 q^{-76} +186 q^{-78} +3 q^{-80} -172 q^{-82} +252 q^{-84} -210 q^{-86} +77 q^{-88} +98 q^{-90} -221 q^{-92} +231 q^{-94} -136 q^{-96} -38 q^{-98} +207 q^{-100} -299 q^{-102} +277 q^{-104} -150 q^{-106} -24 q^{-108} +177 q^{-110} -251 q^{-112} +231 q^{-114} -142 q^{-116} +28 q^{-118} +61 q^{-120} -111 q^{-122} +108 q^{-124} -71 q^{-126} +33 q^{-128} +2 q^{-130} -19 q^{-132} +20 q^{-134} -16 q^{-136} +8 q^{-138} -3 q^{-140} + q^{-142} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-2 q+4 q^{-1} -4 q^{-3} +3 q^{-5} +3 q^{-11} -4 q^{-13} +3 q^{-15} -3 q^{-17} + q^{-19} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{10}-2 q^8+q^6+5 q^4-11 q^2+4+19 q^{-2} -27 q^{-4} -2 q^{-6} +38 q^{-8} -27 q^{-10} -17 q^{-12} +36 q^{-14} -6 q^{-16} -23 q^{-18} +12 q^{-20} +19 q^{-22} -16 q^{-24} -16 q^{-26} +30 q^{-28} - q^{-30} -37 q^{-32} +25 q^{-34} +18 q^{-36} -37 q^{-38} +8 q^{-40} +24 q^{-42} -18 q^{-44} -5 q^{-46} +12 q^{-48} -2 q^{-50} -3 q^{-52} + q^{-54} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-2 q^{19}+q^{17}+2 q^{15}-2 q^{13}-5 q^{11}+7 q^9+13 q^7-20 q^5-29 q^3+39 q+61 q^{-1} -51 q^{-3} -119 q^{-5} +54 q^{-7} +189 q^{-9} -27 q^{-11} -248 q^{-13} -37 q^{-15} +284 q^{-17} +116 q^{-19} -271 q^{-21} -184 q^{-23} +206 q^{-25} +236 q^{-27} -116 q^{-29} -245 q^{-31} +13 q^{-33} +227 q^{-35} +78 q^{-37} -186 q^{-39} -153 q^{-41} +137 q^{-43} +215 q^{-45} -89 q^{-47} -257 q^{-49} +27 q^{-51} +285 q^{-53} +37 q^{-55} -287 q^{-57} -119 q^{-59} +266 q^{-61} +183 q^{-63} -202 q^{-65} -235 q^{-67} +117 q^{-69} +250 q^{-71} -26 q^{-73} -215 q^{-75} -48 q^{-77} +155 q^{-79} +86 q^{-81} -85 q^{-83} -86 q^{-85} +28 q^{-87} +60 q^{-89} +4 q^{-91} -34 q^{-93} -9 q^{-95} +11 q^{-97} +7 q^{-99} -2 q^{-101} -3 q^{-103} + q^{-105} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-q^2-1+4 q^{-2} -2 q^{-4} + q^{-6} +2 q^{-8} -2 q^{-10} +2 q^{-12} -2 q^{-14} +2 q^{-16} + q^{-18} -2 q^{-20} +3 q^{-22} -2 q^{-24} -2 q^{-26} + q^{-28} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{12}-q^{10}-2 q^8+3 q^6+5 q^4-4 q^2-11+7 q^{-2} +20 q^{-4} -11 q^{-6} -22 q^{-8} +12 q^{-10} +24 q^{-12} -10 q^{-14} -22 q^{-16} +11 q^{-18} +16 q^{-20} -8 q^{-22} -8 q^{-24} +8 q^{-26} +2 q^{-30} +10 q^{-32} -6 q^{-34} -10 q^{-36} +6 q^{-38} +14 q^{-40} -17 q^{-42} -19 q^{-44} +14 q^{-46} +18 q^{-48} -13 q^{-50} -17 q^{-52} +12 q^{-54} +15 q^{-56} -6 q^{-58} -15 q^{-60} +3 q^{-62} +9 q^{-64} +2 q^{-66} -3 q^{-68} -2 q^{-70} + q^{-72} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-2 q^6+6 q^2-7-4 q^{-2} +19 q^{-4} -11 q^{-6} -13 q^{-8} +30 q^{-10} -11 q^{-12} -18 q^{-14} +29 q^{-16} -7 q^{-18} -15 q^{-20} +13 q^{-22} +3 q^{-24} -6 q^{-26} -7 q^{-28} +11 q^{-30} +9 q^{-32} -23 q^{-34} +9 q^{-36} +18 q^{-38} -29 q^{-40} +5 q^{-42} +18 q^{-44} -22 q^{-46} +7 q^{-48} +11 q^{-50} -12 q^{-52} +4 q^{-54} +2 q^{-56} -3 q^{-58} + q^{-60} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^5-q^3- q^{-1} +4 q^{-3} -2 q^{-5} +3 q^{-7} +2 q^{-11} -2 q^{-13} -2 q^{-19} +2 q^{-21} +3 q^{-25} -2 q^{-27} +3 q^{-29} -2 q^{-31} - q^{-33} -2 q^{-35} + q^{-37} } |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^8-2 q^6+4 q^4-8 q^2+13-18 q^{-2} +27 q^{-4} -31 q^{-6} +35 q^{-8} -34 q^{-10} +29 q^{-12} -18 q^{-14} +3 q^{-16} +13 q^{-18} -31 q^{-20} +47 q^{-22} -61 q^{-24} +68 q^{-26} -67 q^{-28} +63 q^{-30} -49 q^{-32} +35 q^{-34} -15 q^{-36} -2 q^{-38} +17 q^{-40} -29 q^{-42} +34 q^{-44} -36 q^{-46} +33 q^{-48} -29 q^{-50} +20 q^{-52} -14 q^{-54} +8 q^{-56} -3 q^{-58} + q^{-60} } |
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}-2 q^{10}-2 q^8+2 q^6+7 q^4+2 q^2-10-11 q^{-2} +5 q^{-4} +23 q^{-6} +8 q^{-8} -23 q^{-10} -24 q^{-12} +12 q^{-14} +36 q^{-16} +6 q^{-18} -34 q^{-20} -20 q^{-22} +25 q^{-24} +30 q^{-26} -12 q^{-28} -31 q^{-30} + q^{-32} +29 q^{-34} +7 q^{-36} -25 q^{-38} -12 q^{-40} +20 q^{-42} +16 q^{-44} -15 q^{-46} -19 q^{-48} +14 q^{-50} +24 q^{-52} -8 q^{-54} -32 q^{-56} -2 q^{-58} +34 q^{-60} +17 q^{-62} -30 q^{-64} -34 q^{-66} +14 q^{-68} +37 q^{-70} +4 q^{-72} -31 q^{-74} -18 q^{-76} +19 q^{-78} +23 q^{-80} -5 q^{-82} -16 q^{-84} -4 q^{-86} +9 q^{-88} +5 q^{-90} -3 q^{-92} -3 q^{-94} + q^{-98} } |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-2 q^{16}+4 q^{14}-6 q^{12}+6 q^{10}-5 q^8+10 q^4-19 q^2+31-39 q^{-2} +37 q^{-4} -22 q^{-6} -8 q^{-8} +53 q^{-10} -94 q^{-12} +123 q^{-14} -126 q^{-16} +82 q^{-18} - q^{-20} -105 q^{-22} +205 q^{-24} -241 q^{-26} +205 q^{-28} -91 q^{-30} -61 q^{-32} +196 q^{-34} -257 q^{-36} +214 q^{-38} -82 q^{-40} -83 q^{-42} +199 q^{-44} -208 q^{-46} +106 q^{-48} +71 q^{-50} -229 q^{-52} +296 q^{-54} -241 q^{-56} +68 q^{-58} +148 q^{-60} -329 q^{-62} +404 q^{-64} -336 q^{-66} +158 q^{-68} +73 q^{-70} -266 q^{-72} +359 q^{-74} -328 q^{-76} +186 q^{-78} +3 q^{-80} -172 q^{-82} +252 q^{-84} -210 q^{-86} +77 q^{-88} +98 q^{-90} -221 q^{-92} +231 q^{-94} -136 q^{-96} -38 q^{-98} +207 q^{-100} -299 q^{-102} +277 q^{-104} -150 q^{-106} -24 q^{-108} +177 q^{-110} -251 q^{-112} +231 q^{-114} -142 q^{-116} +28 q^{-118} +61 q^{-120} -111 q^{-122} +108 q^{-124} -71 q^{-126} +33 q^{-128} +2 q^{-130} -19 q^{-132} +20 q^{-134} -16 q^{-136} +8 q^{-138} -3 q^{-140} + q^{-142} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 97"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 t^2+22 t-33+22 t^{-1} -5 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 87, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-4 q^8+7 q^7-11 q^6+14 q^5-14 q^4+14 q^3-11 q^2+7 q-3+ q^{-1} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -3 z^4 a^{-4} -z^4 a^{-6} +2 z^2 a^{-2} -4 z^2 a^{-4} +2 z^2 a^{-6} +z^2 a^{-8} +z^2+2 a^{-2} -2 a^{-4} +2 a^{-6} - a^{-8} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^9 a^{-5} +2 z^9 a^{-7} +6 z^8 a^{-4} +11 z^8 a^{-6} +5 z^8 a^{-8} +8 z^7 a^{-3} +11 z^7 a^{-5} +7 z^7 a^{-7} +4 z^7 a^{-9} +6 z^6 a^{-2} -3 z^6 a^{-4} -21 z^6 a^{-6} -11 z^6 a^{-8} +z^6 a^{-10} +3 z^5 a^{-1} -12 z^5 a^{-3} -32 z^5 a^{-5} -28 z^5 a^{-7} -11 z^5 a^{-9} -7 z^4 a^{-2} -9 z^4 a^{-4} +5 z^4 a^{-6} +4 z^4 a^{-8} -2 z^4 a^{-10} +z^4-2 z^3 a^{-1} +10 z^3 a^{-3} +24 z^3 a^{-5} +20 z^3 a^{-7} +8 z^3 a^{-9} +6 z^2 a^{-2} +10 z^2 a^{-4} +3 z^2 a^{-6} +z^2 a^{-8} +z^2 a^{-10} -z^2-2 z a^{-3} -6 z a^{-5} -4 z a^{-7} -2 a^{-2} -2 a^{-4} -2 a^{-6} - a^{-8} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 97"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -5 t^2+22 t-33+22 t^{-1} -5 t^{-2} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-4 q^8+7 q^7-11 q^6+14 q^5-14 q^4+14 q^3-11 q^2+7 q-3+ q^{-1} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 97. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-4 q^{25}+q^{24}+15 q^{23}-21 q^{22}-12 q^{21}+57 q^{20}-37 q^{19}-57 q^{18}+112 q^{17}-30 q^{16}-119 q^{15}+148 q^{14}+q^{13}-165 q^{12}+148 q^{11}+36 q^{10}-172 q^9+113 q^8+53 q^7-130 q^6+60 q^5+43 q^4-65 q^3+20 q^2+18 q-19+5 q^{-1} +3 q^{-2} -3 q^{-3} + q^{-4} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




